

Fluorescent Silicon Carbide Quantum Dots for Bioimaging And Sensing

David Beke

(Ph.D. Student)

Institute for Solid State Physics and Optics Wigner Research Centre for Physics Hungarian Academy of Sciences

Budapest University of Technology and Economics Faculty of Chemical Technology and Biotechnology Supervisor **Ádám Gali**

- Motivation
- Synthesis
- Caracterization
- First step to bioimaging

- Motivation
- Synthesis
- Caracterization
- First step to bioimaging

C Felice Frankel

The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the wavelength of the electron wave function.

Motivation: Bioimaging

For imaging we have to use nanoclaster that

- small enought
- biocompatable
- has emission is in the optical window

SiC QDs

Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK. Phys Rev Lett 2005;94:026102.

Properties of SiC

paraméter	Si	3C-SiC	GaAs	2H-GaN	Diamond
Band Gap[eV]	1,12	2,4	1,43	3,4	5,5
a [Ă]	5,43	4,36	5 <i>,</i> 65	3,189	3,567
c [Ă]	n.a	n.a.	n.a.	5,185	n.a.
Bond lenght	2.35	1,89	2,45	1,95	1,54
T.E.C [10 ⁻⁶ /K]	2,6	3,0	5 <i>,</i> 73	5,6	0,8
Density [g/cm3]	2,3	3,2	5 <i>,</i> 3	6,1	3,5
Hőv. tényező [W/cmK] 1,5	5,0	0,5	1,3	20,0
Melt. point [°C]	1420	2830	1240	2500	4000
Mohs hardness		9,5			10

"Band Gap engineering"

- Motivation
- Synthesis
- Caracterization
- First step to bioimaging

Microsize \rightarrow nanosize

J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, and P. K. Chu, "Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method," *Nanotechnology*, vol. 18, no. 36, p. 365603, Sep. 2007.

 $\mathrm{SiC}^{4+} + 4\mathrm{OH}^{-} \rightarrow \mathrm{SiO}_2 + \mathrm{CO}_2 + 2\mathrm{H}_2,$

 $\mathrm{SiO}_2 + 6\mathrm{HF} \rightarrow \mathrm{H}_2\mathrm{SiF}_6 + 2\mathrm{H}_2\mathrm{O}.$

Stain Etching

- Motivation
- Synthesis
- Caracterization
- First step to bioimaging

Photoluminescence Study

Surface Study

ATR-FTIR spectroscopy

- Surface are oxidized
 - Carboxyl groups
 - Hydroxyl groups
 - Oxygen bridge

- Motivation
- Synthesis
- Caracterization
- First step to bioimaging

Toxicity

Human cervical adenocarcinoma, HeLa, Cels

AlamarBlue[™]Cell Viability Assay Kit

18 h exposition

 $IC_{50} = 227.5 \ \mu g/mI$

Two photon microscopy

Excitation: 800 nm Emission window: 525-625 nm

- CA1 pyramidal neurons in acute 300 µm mice hippocampal slices.
- Cells were filled with intracellular solution (ICs) and SiC QDs (<5%) via the patch-pipette (6-9 MΩ).
- Images were taken at ~40 µm under the slice surface. In red channel the soma was clearly visible

Conclusions

- SiC QDs are water soluble
- Low citotoxicity
- Emission at 420-550nm
- No blinking, no bleaching
- Surface is ready to derivatisation.

Thank you for your atention

Wigner RCP

Balogh István Szekrényes Zsolt Institute for ensimology

Vértessy Beáta Róna Gergely

Institute of Experimental Medicine

Rózsa Balázs Pálffi Dénes

Cél: Biológiai képalkotás

Használjunk olyan félvezető nanoklasztert, Amely

- eléggé kisméretű
- biokompatibilis
- Infravörös fénykibocsátása van

Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK. Phys Rev Lett 2005;94:026102.

SiC

J. Botsoa, V. Lysenko, a Géloën, O. Marty, J. M. Bluet, and G. Guillot, "Application of 3C-SiC quantum dots for living cell imaging," Applied Physics Letters, vol. 92, no. 17, p. 173902, 2008.

С

Beke, Szekrényes et all: Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. APL; Subm.: 2011, 09, 16,

SiC NC – etanol kolloid

Eredmény: méret szerinti szeparálás

Polinorm. Illesztett görbék, A1-3 A4-hez normálva.

