

FLUORESCENT NANOPARTICLES FOR IMAGING, TREATMENT AND MANIPULATION AT CELLULAR LEVEL

J. García Solé

Fluorescence Imaging Group: Dpto de Física de Materiales , C-IV, Facultad de Ciencias.Universidad Autónoma de Madrid, 28049, Madrid.

INTERNATIONAL SUMMER SCHOOL ON FLUORESCENT NANO-PARTICLES IN BIO-MEDICINE

15-20 July 2012 Residencia La Cristalera, Miraflores de la Sierra, Madrid

Multidisciplinar Research

Department of Chemistry and Biochemistry, Concordia University, Canada							INRS, Université de Québec.	
Nicoleta Bogda	an Rafik N	Vaccache	John A. Capobianco	E	Emma Martín Rodrígu	ez	<i>Canada</i> Fiore	nzo Vetrone
Departamento de Biología, UAM					Departamento de Fisiología, Facultad de Medicina UAM		Univ. Sonora, Mexico	
Francis	sco Sanz Rodríg	guez	Mª Ángeles Juarranz	<i>r</i> a	M ^a .C. Iglesias de	la Cruz	M. Barboz	za K. Santacruz
Departamento de F	Física de Mate	eriales, U	AM	olé	Universita Degli S Verona , Italy	Studi di	Marco Pedroni Fabio Piccinelli Patricia Haro	U. Federal de Alagoas, Brasil
L.Martínez Maestro	Iartínez Maestro D.Jaque J.Y. Chooi ¹						II. Dasha	
Ning Dong	A. Benayas		B. De Rosal		Marco Bettinelli	Adolfo	Speghini	. Kocha

-Nanoparticles in medicine: Nanomedicine

-IR excitation: Two-photon fluorescence imaging

-Fluorescent nanothermometers.

-Nanoheaters: Controlled Hyperthermia.

-Controlled cell heating by optical trapping

-Deep tissue imaging

-Fast Imaging: Lifetime imaging nanoparticles

- Summary

Nanoparticles in medicine: Nanomedicine

Why nanoparticles?

-Move in the blood and are preferentially accumulated in tumors, due to its permeability \Rightarrow It is avoided the devastating action of the usual drugs.

-Large surface to accommodate functional groups (diagnosis, therapeutic...)

- Interact in a singular way with biomolecules, proteins and are easily up-taken by cells.

- Spectral properties (semiconductors and metals) depend on the particle size.

SOME APPLICATIONS OF NANOMEDICINE IN CANCER THERAPEUTICS

Non- invasive therapies

Cancer detection (cellular level)

Photodynamic Photothermal, RadioFrequency induced. thermal therapy.

Surgical efficacy

Real time evaluation of therapeutic

IR excitation: Two-photon fluorescence imaging

- IR excitation is less harmful for cells and organelles.

- Depper penetration (700- 1250 nm biological spectral window).

- Almost no autofluorescence.

Nanoparticles for multi-photon excitation

 $NaGdF_{4}$, $NaYF_{4}$, CaF_{2} Dopants : Yb, Er, Nd, Tm

Excitation Mechanisms

QDs and Metals

Up converting (Yb, Er) nanoparticles

L.M. Maestro et al. Optics Express, (2010)

Fluorescent Nanothermometers

Several features in the emission of nanoparticles are sensitive to temperature

Non contact fluorescent thermometers at (potentially) Nanoscale

Nanothermometers

Importance of determining temperature at micro/ nano scale

Thermal imaging

Tumor temperatures are slightly higher due to higher blood flow and larger metabolic activity

; Nano-thermo-imaging would be useful do detect cancer at cellular scale!

The first (Na Y F₄:Yb, Er) Nanothermometers

The green-Er³⁺ ion-emission is sensitive to temperature changes in the physiological range

Vetrone et al. ACS Nano vol.4, No. 6 (2010)

Intracellular temperature measurements (External heating by a resistor)

Sensitivity : ±1.5 °

Metals: Nanoheaters

Gold Nanoparticles (mostly nanorods) are very efficient "Nanoheaters"

Light induced Hyperthermia

Thermal imaging of tumor during photo-thermal treatment (Gold Nanorods)

J.T. Robinson et al. Nano. Res., 3 (11), 779 (2010)

Temperature measured with a thermocouple Uncontrolled heating area

¡Need of temperature control at tumour scale!

Looking for the best Nanothermometer...

Quantum Dots improve the thermal sensitivity of UCNPs

CdSe-4 nm-QDs Nanothermometers

CdSe-QDs show a very strong two-photon excited emission

D. Jaque et al. J. Luminescence. (2012)

Looking for the best Nanoheaters ... Efficiency of Gold Nanoheaters Best Nanoshells Scattering 4.5 Absorption 4 Total Extinction 3.5 Core radius = 50 nm: shell thickness $\alpha_{ext} = \alpha_{abs} + \alpha_{scat}$ = 10 nm). 3 2.5 2.5 2 Efficiency 1.5 ***************** = 67%0.5 Π 850 wavelength (nm) 650 750 950

Best Nanocages

J. Chen et al Nanoletters, Vol 7, No. 5, 1318 (2007)

QDs sensed laser heating experiments to look for the Best GNRs

Heating beam

Cells unaffected

Cell death

Spatial distribution of temperature

Spatial distribution of temperature increments caused by a 808 nm laser beam tightly focused within a GNR+QDs:PBS solution. Experiments were carried out by using the same concentrations as those used for the incubation of HeLa cells.

Project of "in vivo" Controlled Hyperthermia

Controlled cell heating by optical trapping

An optical trap results when a high-numerical aperture lens is used to focus a laser beam to a diffraction-limited spot

Gradient Force on a spherical particle : Forces the particle towards the higest intensity region

Lymphocites are quasi-spherical cells

Temperature induced cell damage during trapping Low power (< 100 mW)

Power (110 mW)

Optical trapping of lymphocytes with 110 mW reveals a significant reduction in circularity due to the irregular shape (apoptosis) induced by trap/heating.

2000

Dong, Pedroni et al, ACS Nano, 15, 8665 (2011)

Across tissue temperature measurements

Fluorescence Lifetime Imaging

;Independent on fluorophore concentration!

CdTe-QDs for Lifetime imaging

P. Haro et al, Small (2012)

Most suitable QDs for Lifetime Imaging

¡The size also plays a role for brightness!

CdTe-QDs

L. M. Martinez Maestro et al. Journal of Applied Physics., 111, 023513(2012).

Final Goal: Multifunctional Nanoparticles

SUMMARY

-Inorganic Nanoparticles (QDs and UCNPs) are excellent probes for multi-photon excited fluorescence thermal imaging : "Nanothermometers"

- GNRs (41 x 10 nm) are the best optical nanoheaters.

- Mixed solutions of Gold Nanorods + CdSe Quantum Dots allow for controlled hyperthermia of cancer at cellular level.

-The temperature increase of cell optically trapped can be controlled by nanothermometry: Selecting the proper wavelength apoptosis can be induced

- Nd-Activated nanoparticles have strong potential for deep tissue imaging

- CdTe are promising nanoparticles for lifetime imaging. Much faster and accurate detection