Luminescence Nanothermometry in Living Cells

Fiorenzo Vetrone

Université du Québec, Institut National de la Recherche Scientifique – Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec, Canada, J3X 1S2

Email: vetrone@emt.inrs.ca

XIX Escuela Internacional de Verano Nicolás Cabrera, International Summer School on Fluorescent Nanoparticles in Biomedicine, Miraflores de al Sierra, Madrid, Spain, July 16-20, 2012

Centre - Énergie Matériaux Télécommunications

GERMANIA ANCORA BATTUTA (2-1) E ORA LA SPAGNA

Super Balotelli: tutta l'Italia è in festa

È EUROFINALE Cassano e Montolivo lo ispirano e lui segna due gol da campione. Al 92' il rigore tedesco

"Editoriale E' NATA **UNA STELLA**

di ANDREA MONTI

Finalmente è nata una stella Eccolo li piantato in mezzo a campo, strafottente come un bronzo di Riace da playsta-tion, il simbolo della nuova Italia: SuperMario Balotelli, il ragazzo dei sogni. Il limite è il cielo, avevamo scritto dopo la prova con l'In-ghilterra. Non era retorica, era un aiudizio. Ieri la Nazionale lo ha toccato davvero e lo ha dipinto col suo colore: solo az-zurro nella notte magica di Varsavia

L'ARTICOLO A PAGINA 23

20629>

Berlusconi su Thiaao Silva: «Ha chiesto un incredibile aumento di stipendio, se divento tesoriere della Margherita lo accontento

SUPER ECONOMY, 300.000 posti al mese: il massimo risparmio.⁽¹⁾ - ECONOMY, 700.000 posti al mese: convenienza senza rinunciare alla possibilità del cambio prenotazione/bialietto, una sola volta fino alla partenza del treno.⁽²¹ - BASE, massima libertà con cambi illimitati gratuiti fino alla partenza del treno.⁽²¹ - Informazioni e acquisti on line e presso tutti i canali di vendita. Trenitalia. La scelta più conveniente che c⁴e. linital e soggetta a restrizioni. Il combio della presotazione/biglietto, l'accesso ad un teno divenso da quello prevatato ed l'initiano non sono consentit. - (2) Offerto a pasti linitati e soggetta a restrizioni. Il combio pre statuo tato di mon a bello di servicio a dossa. Il novo l'algotto mostene le acarteristiche dell'accesny. Il initiano e l'accesso ad un teno divenso non sono consentit. - (2) Offerto a pasti initiati e soggetta a restrizioni. Il combio pre

ARLANDO, ARCHETTI, CECCHIMI, CENITI, ELEFANTE, GRAZIANO, LICARI, RICCI, VELLUZZI, VERNAZZA, ANGIONI, CITO, DEGL'INNOCENTI, FROSIO, MANCINI, SCHIANCHI, BAZZONI PAG. 2-23

POUR HOMM 20625

ritardo perché al rifornimento ho anche

Synthesis

- Novel multiphoton excited nanoparticles
- Novel NIR emitting nanoparticles

Multifunctional Nanovehicles

Light sensitized targeted release of bone growth factors (bone regeneration, bone cancer)

Biosensing

- Optical barcode sensor arrays
- Ir-Metal NP-Multiphoton
 Excited NP-DNA
 complexes

Nanothermometry

Nanoscale

View Online / Journal Homepage / 1 Dynam

Cite this: Nanoscale, 2012, 4, 4301

www.rsc.org/nanoscale

Luminescence nanothermometry†

Daniel Jaque^{*a} and Fiorenzo Vetrone^{*b}

vd 30th March 2012, Accepted 14th May 2012 0.1039/c2nr30764b

rrent status of luminescence nanothermometry is reviewed in detail. Based on the main ters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and , we initially describe and compare the different classes of luminescence nanothermometry. uently, the various luminescent materials used in each case are discussed and the mechanisms at t of the luminescence thermal sensitivity are described. The most important results obtained in use are summarized and the advantages and disadvantages of these approaches are discussed.

REVIEW

Minireviews

Upconverting Nanoparticles

Upconverting Nanoparticles for Nanoscale Thermometry

Jniversité d'avant-garde

Lorenz H. Fischer, Gregory S. Harms, and Otto S. Wolfbeis*

Angew. Chem., 50; 4546 (2011)

Thermometry at the Nanoscale

Carlos D. S. Brites,^a Patricia P. Lima,^a Nuno J. O. Silva,^a Angel Millán,^b Vitor S. Amaral,^a

Fernando Palacio,*^b and Luís D. Carlos,*^a

DOI: 10.1039/C2NR30663H

Students and Collaborators

- Prof. José García Solé
- Prof. Daniel Jaque
- Prof. Angeles Juarranz de la Fuente
- Prof. Francisco Sanz-Rodríguez
- Prof. Maria Carmen Iglesias-de la Cruz
- Dr. Emma Martin Rodriguez
- Laura Martin Maestro

- Prof. Adolfo Speghini
- Prof. Marco Bettinelli
- Dr. Fabio Piccinelli
- Dr. Marco Pedroni

- Prof. John A. Capobianco
- Dr. Venkatarmanan Mahalingam
- Dr. Nicoleta Bogdan
- Rafik Naccache

- Prof. Dongling Ma
- Dr. Marta Quintanilla Morales
- Dr. Haiguang Zhao
- Fuqiang Ren
- Yue Huang

Nanothermometry

- What is Nanothermometry?

Nanothermometry aims to extract knowledge of the local temperature of a given system with sub-micrometric spatial resolution

– Why is it Important?

Such knowledge is required for the complete understanding of micrometric and nanostructured systems whose dynamics and performance are strongly determined by temperature

Uses of Nanothermometry

- Micro/Nano-Electronics
- Integrated Photonic Devices
- Biomedicine

INRS

Université d'avant-garde

Color coded thermal image of a multibranched microfluidic circuit

D. Ross, M. Gaitan and L. E. Locascio, *Anal. Chem.*, 2001, **73**, 4117-4123

Thermal image of an opto-fluidic device using fluorescent dyes N. Ishiwada, S. Fujioka, T. Ueda and T. Yokomori, *Opt. Lett.*, 2011, **36**, 760-762.

Cell culture during gold nanoparticle mediated heating by an NIR laser beam B. Han, W. L. Hanson, K. Bensalah, A. Tuncel, J. M. Stern and J. A. Cadeddu, *Ann. Biomed. Eng.*, 2009, **37**, 1230-1239

Nanothermometry in Biomedicine

- Fundamental Interest: Temperature plays a crucial role in most biosystems determining their dynamics and properties
 - Cell division rates (i.e. determines rate of tissue growth)
 - Drastically affects mechanical, structural and optical properties (i.e. leads to denaturation in proteins)
- Disease Detection: Vital for the early detection and treatment of many diseases
 - First signatures of any given illness is the appearance of thermal singularities.
 - In cancer, thermal singularity associated with incipient tumors becomes detectable when they reach a size consisting of thousands of cancer cells (i.e. when the tumor size is well below 1 mm)

Types of Nanothermometers

- Electrical Nanothermometry
- Mechanical Nanothermometry
- Optical Nanothermometry
 - Interferometry
 - Reflection
 - Raman
 - Pyrometric
 - Infrared
 - Fluorescence/Luminescence

Different Classes of Luminescence Nanothermometers

- Intensity Luminescence Nanothermometry
- Band-Shape Luminescence Nanothermometry
- Spectral Luminescence Nanothermometry
- Polarization Luminescence Nanothermometry
- Bandwidth Luminescence Nanothermometry
- Lifetime Luminescence Nanothermometry

INRS Université d'avant-garde

Intensity Luminescence Nanothermometry

- Thermal sensing is achieved through the analysis of the luminescence intensity
- When temperature changes, there is an overall change in the number of emitted photons per second such that the emission spectrum becomes less (or more) intense
- Generally caused by the thermal activation of luminescence quenching mechanisms and/or increases in the non-radiative decay probabilities

Wavelength

Band-Shape Luminescence Nanothermometry

- Refers to the relative intensity between the different spectral lines that make up the luminescence spectrum
- Thermally induced variations in the bandshape usually take place when the electronic states from which emission is generated are very close in energy such that they are thermally coupled
- Often referred to as **ratiometric** sensing
- Can be also present in mixed systems, *i.e.* systems containing more than one class of emitting centers

INRS Université d'avant-garde

Spectral Luminescence Nanothermometry

- Based on the analysis of the spectral positions of the emission lines, which are unequivocally determined by the energy separation between the two electronic levels involved in the emission
- This depends on a large variety of temperature dependent parameters of the emitting material including:
 - Refractive index
 - Inter-atomic distances (density)

Wavelength

Polarization Luminescence Nanothermometry

- In anisotropic media, the emitted radiation is generally non-isotropically polarized
- Consequently, the shape and intensity of the emitted radiation are strongly dependent on its polarization
- Exploits the ratio between the luminescence intensities emitted at two orthogonal polarization states

Wavelength

Bandwidth Luminescence Nanothermometry

- The width of the various emission lines that make up any luminescence spectrum is determined by the properties of the material:
 - Degree of disorder
 - Temperature
- As the temperature of a luminescent material is increased, a corresponding increase in the density of phonons occurs resulting from the spectral contribution of homogeneous line broadening
- Near RT, homogeneous line broadening leads to a linear relationship between bandwidth and temperature

Wavelength

Lifetime Luminescence Nanothermometry

- Luminescence lifetime, τ_f , is defined as the time that the emitted luminescence intensity decays down to 1/e of its initial value after a pulsed excitation
- Indication of the total decay probability of the emitted intensity (this probability is defined as the inverse of the luminescence lifetime)
- Decay probabilities from electronic levels depend on many factors and many of them are related to temperature
 - Phonon assisted energy transfer processes
 - Multiphonon decays

Lifetime

Time

Luminescent Nanoparticles

- Nanoparticles have demonstrated their significant potential in applications related to both diagnostics and therapeutics.
- Semiconductor quantum dots (QDs) are widely used in many fields
- Most nanoparticles are excited with UV light, which has several limitations
 - Low penetration depths
 - High autofluorescence
 - Potential damage to specimens under study

http://nanoe.ece.drexel.edu/wiki/index.php/ Quantum_Dot_Challenge

http://www.immunology.utoronto.ca/ FlowCytometry/FlowIntro.htm

Multi-Photon Excited Luminescent Nanoparticles

- Multi-photon excited luminescent nanoparticles are finding widespread use in nanomedicine
- Semiconductor quantum dots (QDs), gold nanorods (GNRs) are being used in two-photon imaging applications
- Excitation with NIR light (800-1000 nm):
 - Increases tissue penetration depths
 - Minimizes autofluorescence
 - Does not have negative effects on biological specimens

The Lanthanides

Periodic Table of the Elements

The Lanthanides and Upconversion

http://www.dcb-server.unibe.ch/groups/guedel/research/hug_upc_movie.htm

Upconverting Lanthanide-Doped Luminescent Nanoparticles

- Goal:
 - Synthesis of new luminescent Ln³⁺-doped nanoparticles and investigate their application to biology, specifically in nanothermometry
- Requirements:
 - Small size with narrow particle size distribution
 - Monodispersed
 - Water dispersible and/or dispersible in aqueous media
 - Biocompatible
 - Appropriate surface functionalization

Upconversion of Lanthanide-Doped Nanoparticles

NaYF₄ nanoparticles co-doped with Er^{3+} (or Tm^{3+}) and Yb^{3+} ions

J. C. Boyer, F. Vetrone, L. A. Cuccia, J. A. Capobianco, J. Am. Chem. Soc., 128; 7444 (2006)

The Fluorides, Why MLnF₄ (M = Na, Li and Ln = Y, Gd)?

- Fluorides possess highest upconversion efficiencies among bulk materials
- Upconversion reported from colloidal dispersion of various fluoride nanoparticles
- NaYF₄
- NaGdF₄
- LiYF₄
- BaYF₅
- KY_3F_{10}
- CaF₂
- GdF_3
- KGdF₄

Synthesis of Fluoride-Based Upconverting Ln³⁺-Doped Nanoparticles

- Three main synthesis strategies:
 - 1. Prepare hydrophobic nanoparticles *via* thermal decomposition synthesis
 - Modify the surface for water dispersibility
 - 2. Directly prepare hydrophilic nanoparticles *via* solvothermal synthesis
 - 3. Rapidly prepare upconverting nanoparticles *via* **microwave-assisted synthesis**

Thermal Decomposition

Reaction Solution \wedge 310°C

INRS Université d'avant-garde

Journal of Materials Chemistry

KY₃F₁₀:Er³⁺, Yb³⁺

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J. A. Capobianco, *J. Mater. Chem*, **19**; 3149 (2009)

NaGdF₄:Er³⁺, Yb³⁺ core / NaGdF₄:Yb³⁺ shell

F. Vetrone, R. Naccache, V. Mahalingam, Christopher G. Morgan, J. A. Capobianco, *Adv.Funct.Mater.*,**19**; 2924 (2009)

LiYF₄:Tm³⁺, Yb³⁺

V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J. A. Capobianco, *Adv.Mater.*,**21**; 4025 (2009) *UV to NIR luminescence*, **Nature Photonics, Research Highlights**, Volume 3, Page 606, November 2009

n

Solvothermal Synthesis

- Synthesize upconverting nanoparticles that can be dispersed directly in water
- No additional step required
- Prepared starting from the metal chlorides and NH₄F and a capping ligand in ethylene glycol
- Ligands (e.g.)

Polyethylenimine (PEI) – NH₂ Groups Poly(sodium 4-styrenesulfonate) – SH Groups Polyacrylic acid – COOH Groups

20 nm

Two-Photon Optical Imaging

L. Martinez Maestro, E. Martín Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco and J. García Solé, *Opt. Express*, **18**; 23544 (2010)

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. Martin Rodriguez, D. Jaque, J. García Solé, J. A. Capobianco, *Nanoscale*, **2**; 495 (2010)

Two-Photon Optical Imaging

Er³⁺/Yb³⁺ Co-Doped Nanparticles

Nanothermometry \rightarrow **Thermal Imaging – Why?**

 Tumors are "warmer" because their larger metabolic activity and also because the more intense blood circulation in its surroundings

- Early detection of disease
- Several years before a mammogram

http://www.breastthermography.com/breast_thermography_mf.htm

Nanothermometer

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, J. A. Capobianco, ACS Nano, 4; 3254 (2010)

NIR-NIR Multi-Photon Imaging

- The advantages of NIR excitation light has been previously discussed
- However, an optimal system with **both** excitation and emission wavelengths that lie within the optimal window for tissue penetration would be a powerful tool for future *in vivo* imaging and nanothermometry
- The Tm³⁺ ion has a strong emission at 800 nm

NIR-to-NIR Multi-Photon Imaging with CaF₂:Tm³⁺, Yb³⁺ Upconverting Nanoparticles

CaF₂:Tm³⁺, Yb³⁺ Upconverting Nanoparticles: Towards Multi-Modality

Quantum Dots as Nanothermometers

- CdSe/CdS or CdTe
- PbS/PbSe (Chalcolgenides)
- Core/Shell (PbS core/CdS shell)

QD Nanothermometers (CdSe)

- The two-photon excited emission of CdSe QDs show a double dependence of temperature
 - Red shift of the emission
 - Decrease in intensity

L. Martinez Maestro, E. Martín Rodriguez, F. Sanz Rodríguez, M. C. Iglesias-de la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco and J. García Solé, *Nano Letters*, **10**; 5109-5115 (2010)

QD Nanothermometers (CdTe)

L. M. Maestro, C. Jacinto, U. S. Rocha, F. Vetrone, J. A. Capobianco, D. Jaque and J. García Solé, Small, 7; 1774-1778 (2011)

NIR-to-NIR Multi-Photon Imaging with CdTe QDs

L. M. Maestro, J. E. Ramírez-Hernández, N. Bogdan, J. A. Capobianco, F. Vetrone, J. García Solé and D. Jaque, Nanoscale, (In Press)

Conclusions

- Multiphoton excited nanoparticles, (i) lanthanide-doped nanoparticles and (ii) semiconductor quantum dots are capable of (up)converting near-infrared light to higher energies.
- Can be synthesized by various techniques
 - Thermal decomposition (requires subsequent surface modification)
 - One-step solvothermal synthesis
 - Microwave-assisted synthesis
- Can be used in various biological applications
 - Biosensing
 - Two-photon optical imaging
 - Nanothermometry

Acknowledgments

Canadian Institute for Photonic Innovations

Développement économique, Innovation et Exportation

Natural Sciences and Engineering **Research Council of Canada**

Fonds de recherche sur la nature et les technologies

Canada Foundation for Innovation

Fondation canadienne

pour l'innovation

Ar NIRES HINIUniversité d'avant-garde

Vaction publique et des rapports sociaux