

Universidad Zaragoza

Multifunctional magnetic nanoparticles for biomedical aplications

Fernando Palacio Instituto de Ciencia de Materiales de Aragón. CSIC – Universidad de Zaragoza palacio@unizar.es

Co-authors

A. Millán, R. Piñol, Lamiaa M. A. Ali, R. Bustamante, L. Gabilondo, J. L. Murillo Instituto de Ciencia de Materiales de Aragón CSIC – University of Zaragoza

V. Sorribas Dept. of Molecular Toxicology University of Zaragoza

M. Gutiérrez, R. Cornudella Dept. of Hematology, Faculty of Medicine University of Zaragoza

P.P. Lima, C.D.S. Brites, L.D. Carlos

Dept. of Physics and CICECO Universidade de Aveiro. Portugal

Outline

- Universidad Zaragoza
- Interest of magnetic nanoparticles (MNP) in biomedical applications
- A word about size: what makes the difference?
- The magnetic functionality
- Designing magnetic nanoparticles
- Multifunctional nanoplatform: MRI, magnetic hyperthermia, fluorescence, antibodies, thermometry
- Toxicological results
- Hemocompatibility

Interest of Magnetic Nanoparticles in Biomedical Applications

Universidad Zaragoza

- Magnetic functionality => magnetic fields penetrate human tissues
- Strong magnetic moments => can affect relaxation times of nearby protons
- They obey Coulomb's law => can be controlled at distance
- ✓ They can convert energy into heat from an alternating magnetic field
- ✓ Controllable sizes (≥ 100 nm ≤ 10 nm) and shapes (spheres, needles, beads)

Is nano just a matter of size?

Universidad Zaragoza

From the physics point of view Nano- is the interface separating the atomic from the macroscopic scales

Atomic World ruled by the laws of Quantum Mechanics

Macroscopic World as we perceive it, ruled by Classical Mechanics and Electromagnetism laws

In the atomic world there are properties whose critical lengths are at the nano-scale

Universidad Zaragoza

Is nano just a matter of size?

At the scale below a critical length new properties arise that can give rise to new materials and new applications

Critical lengths such as

- one electron Fermi wavelength
- exciton Bohr radius
- single magnetic domain length

lead to Quantum Dots and Superparamagnetic particles

Universidad

CSIC

Magnetic Particles => Multidomain

Η

+ Magnetic field H

Magnetic domains

Magnetisation M = m/V_m

ĪĪĪ

Hystheresis cycle

Single-domain particles => superparamagnets

Universidad Zaragoza

When the size of a particle is smaller than the minimum allowing the formation of domains (≈ 20 - 30 nm), it becomes single-domain and

superparamagnetic

Superparamagnetic particles are hardly attracted by magnets, and the smaller the harder

The magnetic functionality

A force will be experienced provided there is a field gradient. More intuitively, we can relate F_m to the differential of the magnetostatic field energy density **B**·**H**/2:

$$F_m = V_m \Delta \chi \nabla (B \cdot H/2)$$

Thus if $\Delta \chi > 0$, F_m acts in the direction of the steepest ascent of the energy density scalar field.

Magnetic forcedriven applications

DRIVING

Targeted drug delivery

i.e. retaining drugs in areas of low blood irrigation or easily accessible by magnetic forces.

Nanobolas para el desarrollo de un biosensor

SENSING

CSIC

Universidad Zaragoza

Esquema de implantación del biosensor

Nanobolas para el desarrollo de un biosensor

SENSING

CSIC

^{IIC} Funcionalización de nanobolas

IMAGING

Universidad Zaragoza

R. Weissleder et el., Nature Med. 6(2000)351

IMAGING

MRI intensity (and therefore the contrast) depends on:

Intrinsic parameters:

- local proton density N(H), (water, fat, ...)
- relaxation times, T₁, T₂
- magnetic susceptibility differences

Extrinsic parameters:

- magnetic field
- timing of the pulse sequences (TE, TR)
- contrast agents (CA)

IMAGING

Universidad Zaragoza

MRI signal is $s(t) = N(H) e^{-TE/T2^*} (1 - e^{-TR/T1})$

With CA it is possible to change the nuclear relaxation times (more efficient than protons' density differences) and so to obtain a better image contrast and pathology evidence

- Huge magnetic moments as compared to Gd chelates
- Proton relaxation is affected by the large magnetic field heterogeneity in the vecinity of the particles
- Can induce >10 fold increase in proton relaxivities
- Shortening of relaxation times, particularly T₂ (*negative* contrast)
- Good spacial resolution, of the order of single cell detection (10 - 50 μm³)

Magnetic heating

HEATING

Magnetic systems can convert energy into heat under the effects of an alternating magnetic field

- inductive heating (eddy currents)
- hysteresis losses

$$P_{FM} = -\mu_0 f \oint H dM$$

No relevant at low ac magnetic fields

Magnetic heating

HEATING

Neél relaxation

Rotational Brownian motion

$$P_{SPM} = -\frac{1}{2}\mu_0\chi''\omega H_0^2$$

Magnetic heating

HEATING

 $P_{SPM} = -\frac{1}{2}\mu_0\chi''\omega H_0^2$

Biological limitations $50 \text{ kHz} \le f \le 1200 \text{ kHz},$ H < 15 kA/m $(H \cdot f) \text{max} = 485 \text{ kHz} \cdot \text{kA/m}$

After Brezovich [Med. Phys. Monograph 1988 16 82]

"test person had a sensation of warmth, but was able to withstand the treatment for more than one hour without major discomfort"

Standard values for comparative purposes: H = 4.85 kA/m, f = 100 kHz

Magnetic nanoparticles for heating

Direct injection of MNP into the tumor: clinical phase II

Clinical Results

Phase I/II (feasibility) Study: Nano-cancer therapy on Glioblastoma (brain tumor trial) [3/2003-12/2004].

- All study patients (14) showed <u>no side effects</u> of the Nano-cancer therapy (2 patients fell asleep during therapy and had to be woken up after the therapy time of 60 min)
- On all study patients therapeutical temperatures of up to and more than 50°C inside the tumor were achieved.
- · Indication for a local effectiveness.
- 1 patient in complete remission since 2.5 years.
- · Rationale for a study of effectiveness.

Director of Study: Prof. Dr. med. Klaus Maier-Hauff, ZE Neurosurgery, Bundeswehrkrankenhaus Berlin

Selte 9 / Dr. Dr. Dietmar Wechsle

Magnetic nanoparticles for heating

Direct injection of MNP into the tumor: clinical phase II

Magnetic nanoparticles for heating

HEATING

Direct injection is

non-selective

Universidad Zaragoza

- contaminates healthy tissues
- only valid for large tumors
- good heating efficiency as doses can be very high

Biological vectorisation is

- highly selective (specific therapeutic target)
- heating is very localised
- valid for micro-tumors (preventive)
- heating efficiency is linked to the number of MNP recognaising the target

Biomedical Applications of Magnetic Nanoparticles

Universidad Zaragoza

冨

CSIC

Biomedical Applications of Magnetic Nanoparticles

From A. Ito et al., J Biosc. and Bioengin. 100(2005)1

Multifunctionality

Fabrication methods

Top-down approach

It is the traditional approach: a nanosized material is obtained from a much larger source by grounding or other size-reduction actions.

Bottom-up approach

Uses molecules or clusters and selfassemble and self-organised them like in a *Lego* toy to fabricate new materials. In many examples tends to replicate nature developing processes.

Top-down approach

Molecular self-assembling

Bottom up preparation routes

Restricted space: moulds

సి

Designing MNP for Biomedical Applications

A. Millán and F. Palacio, Applied Organometallic Chemistry, 15, 396-400 (2001)

A. Millán, F. Palacio et al., Acta Materialia 55, 2201-9 (2007)

A. Millán, F. Palacio et al., Patent ES2308901B1

An easy route for functionalisation: Michael reaction

R. Piñol, A. Millán, F. Palacio et al., Patent P201031493

CSIC

Universidad Zaragoza

Adjustable Size

Magnetic nucleus $3 \text{ nm} \rightarrow 25 \text{ nm}$

TEM size distribution of Fe_2O_3 particles in a series of Ferrofluid samples in PBS. Same composition, but different Fe_2O_3 content

Universidad Zaragoza

冨

Adjustable Size

Hydrodynamic size 30 nm → 150 nm

Multifunctional nanoplatform

Our particles

Richard Fleischer, 1966, con Stephen Boyd, Raquel Welch, ...

CSIC

Universidad Zaragoza

Universidad Zaragoza

浙

CSIC

0.2 0.5 1.5 T

A = 7.4 nm B = 8.6 nm C = 10.8 nm D = 15 nm

冨

CSIC

NMR relaxometry

A = 7.4 nm B = 8.6 nm C = 10.8 nm D = 15 nm

CSIC

Universidad Zaragoza

$\rm r_{1,2}$ dependence with size

MRI imagens

H. Amiri, et al., Magn. Res. in Medicine, (2011), DOI: 10.1002/mrm.22959

MNP-based Hyperthermia

Specific Loss Power of particles of 10.8 and 15 nm as compared with commercial products.

CSIC

Universidad Zaragoza

Synthesis of fluorescent groups

c: 5.10⁻³ M (diclorometano)

CSIC

Zaragoza

Antibody: AS143 (anti Methylboldenone androgenic anabolic steroid)

Universidad Zaragoza

Antibody: AS143 (anti Methylboldenone androgenic anabolic steroid)

icma Instituto de Ciencia de Materiales de Aragón

Thermometer design

• [Ln(btfa)₃(MeOH)(bpeta)] (Ln=Eu & Tb) β-diketonates

• Organic-inorganic hybrid NPs formed by a maghemite $(\gamma - Fe_2O_3)$ magnetic core coated with a tetraethyl orthosilicate/ aminopropyltriethoxysilane *(TEOS/ APTES)* organosilica shell (modified Stöber method)

• Eu/Tb co-doped NPs with Eu:Tb ratios of 2:1 (NP3-2.1), 1:1 (NP3-1.1), 1:2 (NP3-1.2), 1:3 (NP3-1.3) and 1:10 (NP3-1.10)

0 nm

• γ-Fe₂O₃

SEM & TEM

High contrast:
Eu³⁺/Tb³⁺

• Low contrast: APTES/TEOS

EDS mappings

EDS mappings show Eu³⁺ and Tb³⁺ distributions with contours and shapes similar to those of the NPs

The NPs contain both Eu³⁺ and Tb³⁺

Photoluminescence

• 1 & 2: ${}^{5}D_{4} {}^{\ominus}{}^{7}F_{6,5}$ (Tb³⁺) • 3, 4 & 5: ${}^{5}D_{0} {}^{\ominus}{}^{7}F_{2-4}$ (Eu³⁺) • Area marked with an asterisk: Eu³⁺/Tb³⁺ (${}^{5}D_{0} {}^{\ominus}{}^{7}F_{0,1}$)/(${}^{5}D_{4} {}^{\ominus}{}^{7}F_{4}$) overlapping Commission Internacionale d'Éclairage (CIE) (x,y) color coordinates illustrates the dependence on T:

Eu/Tb luminescent nanothermometer

- Host rational design; an excited triplet with energy above that of the $Tb^{3+} {}^{5}D_{4}$ state, thus warranting the occurrence of thermally-driven ${}^{5}D_{4} {}^{\ominus}$ host energy transfer
- \bullet ΔE between that triplet state and the Eu^{3+} {}^5D_0 emitting level is too large to permit thermally-driven depopulation
- The Tb/Eu relative intensity guarantees absolute measurement of temperature
- The self-calibration (relative intensities) overcomes the well-known drawbacks of intensity-based measurements (*e.g.* sensor concentration and drifts of the lamp and detectors)

Adv. Mater., 2010, 22, 4499; New J. Chem., 2011, 35, 1177 *Spain Patent P200930367*, 2009; PCT/ES2010/070430

Emission spectra

噩

Multifunctional nanoplatform

M3 = FF6@MPEGA+PEGAacac@Eu_{0.25}Tb_{0.75}@DPA

CSIC

Solid Relative Sensitivity and Temperature Range of Operation

- The ∆ parameter presents a temperature dependence almost linear in the temperature range 150-350K.
- The maximum sensitivy is 0.73 %.K⁻¹ at 270 K and the sensitivity is above 0.5 %.K⁻¹ for temperatures T>150Ks

Cytotoxicity

No oxidative stress

Mitocondria are not affected

Apoptosis and necrosis at higher concentration

Lysosomes are enlarged or proliferate

Activity of cytosolic **lactate dehydrogenase** in culture medium of OK cells incubated with nanoparticles at different concentrations and times. This activity indicates that cell membrane has broken and intracellular content has leaked.

Top: Four time courses with different concentrations of Fe₂O₃. 14.3 mg/ml is not toxic, and 28.6 mg/ml only after 3 days. <u>Center</u>: Dose-responses at different days. Lethal mean concentrations (LC50) are calculated for each curve. <u>Bottom</u>: Representation of LC50 evolution with the time, showing that the LC50 diminishes with time, ie. the effect is accumulative.

Effect of the nanoparticle diameter on the OK cell death after 7 days of incubation with 0.01 g/l Fe_2O_3

Toxicity is inversely proportional to diameter of the MNPs

Subcellular localization of fluorescent nanoparticles: LYSOSOMES.

Mitochondria

The only location of SPIONS in cells are the lysosomes.

Uptake kinetics

CSIC

1

(Current work)

Intraperitoneal injection shows No significant effects after 1 month. No damage in organs

Intravenous injection of 5XEndorem shows after 10 days no excess of iron in a variety of tissues neither anomalies in the pathologic anathomy inspection.

Zn-doped modified particles and same doses lead to the same results

Hematotoxicity

M. Gutiérrez, R. Cornudella, J. A. Moreno Faculty of Medicine , Dept. of Haematology

The effect of bioferrofluids on: (A) the prothrombin time (PT) in seconds, (B) the activated partial thromboplastin time (aPTT) in seconds

► No changes in Prothrombine Time (PT) observed.

- Activated partial Thromboplastine Time (aPTT) increases with the concentration of MNPs.
- Combine PT and aPTT results indicate that the bioferrofluids act as non- specific inhibitor / anticoagulant circulating agent for coagulation process.
- ➢ While PEG component does not seem to have any effect on the coagulation process, the coating copolymer P4VP-g-PEG shows strong anticoagulant behaviour indicating that P4VP is at the origin of the effect.

> These effect may not appear in vivo

CSIC Universidad Complete blood picture (CBC)

- There is no significant changes in CBC between test and control in :
- Erythrocyte count
- Leukocyte count
- Hemoglobin
- Platelets

Plasmatic viscosity

Our nanoparticles does not show any change the plasmatic viscosity.

CSIC

M4 Group

(Multifunctional Magnetic Molecular Materials)

Universidad Zaragoza

Alessandro Lascialfari, H. Amiri, P. Arosio, M. Corti

Pasquina Marzola

Julian Carrey and Marc Raspaud

P. Marco, JP Salvador, G. Colom

Manuel Fuentes

Antonio Díez, Pilar Sepúlveda

Belinda Sánchez

Credits

University of Pavia

University of Verona

INSA – Toulouse

IQAC-CSIC Barcelona

Cancer Institute University of Salamanca

Centro de Investigación Príncipe Felipe, Valencia

Centro de Inmunología La Habana (Cuba)

Universidad Zaragoza

- **CONSOLIDER** MAT2007-61621
- Integrated Spanish-Portuguese
- Action PT2009-0131
- MAT2011-25991

Programa CENIT - Ingenio 2010 Industrial Consortium

European Network of Excelence, 6FP

EUROPEAN INSTITUTE OF MOLECULAR MAGNETISM

Molecular Nanoscience