Challenges and Opportunities at the Interface of Nanotechnology and Biomedicine

P.N.Prasad

"Lighting the Way to Technology through Innovation"

The Institute for Lasers, Photonics and Biophotonics

www.photonics.buffalo.edu

The Institute for Lasers, Photonics and Biophotonics

- Multidisciplinary Frontier Research in Lasers, Photonics and Biophotonics
- Extensive Research Facility (\$26 million)
- Education and Training Funded by NSF
- Industrial Collaboration : Co-development, Industrial training, advanced testing
- Technology Transfer : 7 spin off companies (LPT, ACIS, Hybrid Technologies, NanoBiotix, Nanoaxis, Hangzhou Mingyue Laser Optoelectronics Co and Solexant Inc.)
- International collaboration : Joint research, Student exchange, Joint workshop

Major Thrust Areas:

- Advanced Nanomaterials with multifunctionalization
- Metamaterials
- Nanophotonics, Nanomagnetics, Nanomedicine
- Nonlinear optics, Multi-photon processes
- Solar energy, portable energy generation
- Multimodal diagnostics and imaging, Light-activated therapy

www.photonics.buffalo.edu

ILPB Global Collaboration Network

The Institute for Lasers, Photonics and Biophotonics

www.photonics.buffalo.edu

BIOPHOTONICS

PARAS N. PRASAD

♥ 浙江大学出版社

NANOPHOTONICS

PARAS N. PRASAD

Nanophotonics 纳米光子学

> 〔美〕帕拉斯・N・普拉萨德 著 张镇西 等译

Paras N. Prasad

e 西安交通大学出版社 Xi AN JAOTONG UNIVERSITY PRESS

CONTENTS

- 1. INTRODUCTION
- 2. THE HUMAN BODY
- 3. NANOCARRIERS
- NANOCHEMISTRY OF NANOCARRIERS
- 5. MULTIFUNCTIONALITIES FOR DIAGNOSTICS AND THERAPY
- 6. CROSSING THE BIOLOGICAL BARRIERS
- 7. BIOTARGETING
- 8. MULTIMODAL BIOMEDICAL IMAGING
- 9. BIOSENSING
- 10. HIGH THROUGHPUT MULTIPLEXED DIAGNOSTICS

- 11. NANOPHARMACOTHERAPY
- 12. THE HUMAN CIRCULATORY SYSTEM AND THERANOSTICS
- 13. NANOTECHNOLOGY FOR CANCER
- 14. GENE THERAPY
- 15. NANOTECHNOLOGY FOR INFECTIOUS DISEASES
- 16. REJUVENATION THERAPY
- 17. STEM CELL BIOTECHNOLOGY
- 18. TISSUE ENGINEERING
- 19. NANODERMATOLOGY AND
 - NANOCOSMETICS
- 20. NANODENTISTRY
- 21. NANOTOXICITY

"...The first comprehensive and authoritative introduction to Nanomedicine and Nanobioengineering..."

> Each chapter ends with highlights and exercises

Wiley Series in Biomedical Engineering and Multi-Disciplinary Integrated Systems Kai Chang, Series Editor

INTRODUCTION TO NANOMEDICINE AND NANOBIOENGINEERING

Paras N. Prasad

Nanomedicine – New Era in Personalized Medicine

NANOMEDICINE

Yesterday's imagination

James Cameron's "Fantastic Voyage" (1966)

Today's reality

ILPB Nanoclinics

Patented in 2003, licensed to Nanobiotix (Paris) in 2004

hanoXRay

Tomorrow's patient care

Paris, (France) http://www.nanobiotix.com/ *Clinical trial in 2011*

Biophotonics and Nanomedicine

BIOPHOTONICS AND NANOMEDICINE An Interdisciplinary Field

<u>Chemistry</u> Multiscale modeling guided synthesis of Functional Materials and nanoscale building blocks; Surface modification

Basic Sciences

- Physics Manipulation of optical, electronic, magnetic and thermal properties at nanoscale; Multifunctionality
- Biology Understanding of Biological Processes Biocompatibility; Targeting; Bioelimination

Engineering

Micro/nano Integration

Hardware & Software Control

Biotechnology Bioinformatics

<u>Diagnostics</u> In-vitro and in-vivo; Microarray technology

> Pharmacology Disease Modeling; Pharmacokinetics and Pharmacodynamics

Medicine

<u>Therapy</u> Chemotherapy; Photodynamic Therapy; Gene Therapy Toxicity Chemical toxicity; Cellular, tissue and organ toxicities; Immune response Nanotheranostics Combined Diagnostics and Therapy; See, treat and see

LIGHT – MATTER INTERACTIONS FOR BIOPHOTONICS

Linear Light-Matter Interactions

The Jablonski Diagram Describing Possible Fates of Excitation

Non-radiative Processes: Energy dissipation through vibrational relaxations

Light activation

Two-Photon Versus One-Photon Bioimaging

Frequency Conversion

Probes symmetry breaking (cell membrane)

Courtesy of AT&T Archives and History Center

Coherent Anti-Stokes Raman Scattering

Energy

Spontaneous Raman & CARS

Raman

- Low intensity of signal distributed in 4π spatial angle; therefore not efficient for imaging
- Raman Intensity is linearly depends on molecular concentration; therefore microspectrometry useful for quantitive characterization of local concentration of biomolecules

CARS

- High intensity coherent and directional process with accumulation of signal; therefore suitable for imaging
- Non-linear intesity dependence provides high 3D resolution

MULTIPLEXED BIOPHOTONICS IMAGING PLATFORM

ILPB Multiplex Biophotonics Platform

Multimodal CARS/TPEF Imaging

CARS Imaging is one of the most promising technique to observe cellular bio-molecular composition and to investigate its dynamics

2840, 2930 and 2970 Cm⁻¹

Structural Changes in apoptotic HeLa cells

30 min of treatment

Cover page PNAS, 107, 29 (2010)

Multimodal CARS/TPEF imaging **DNA/RNA/Proteins/Lipids**

GFP Fluorescence Recovery after Photobleaching (FRAP)

A. Pliss, A. Kuzmin, A. Kachynski and P. Prasad, Proceedings of National Academy of Sciences of the USA, 107(29) 12771 (2010).

Anti-Stokes Fluorescence Confocal Microscopy

(Temperature Mapping)

A.V.Kachynski, A.N.Kuzmin, H.Pudavar, and P.N.Prasad, Appl. Phys. Lett. <u>87</u> (2005) 023901

Fluorescence lifetime Imaging

Protein in HeLa cells shortens during cell division

A.Pliss, P.N.Prasad et al. submitted to ACS Chemical Biology

3.0

3.1

3.2

Time (ns)

3.3

3.4

3.5

3.6

2.9

200

2.8

NANOEMITTERS FOR BIOMEDICINE

Unique properties at nanoscale

Multimodality/ Multiplexibility

Fluorecent Nanoparticles and Biomedicine

Light Guided Targeted delivery

See, Treat and see (Theranostics)

Multifunctionality of Nanostructures

Challenges for Fluorescent Nanoparticles

- High One- or Two- photon Excitation Efficiency (Absorption Cross-section)
- High Emission Efficiency (Quantum yield)
- Photostability
- Emission in the Near IR spectral range for imaging of deep tissues/ *in vivo* imaging
- Multifunctionality
- Dispersability in Aqueous Medium with No Significant Reduction of Emission Efficiency
- High Cellular Uptake for Cellular Imaging
- Biocompatibility and Biodegradability
- Nontoxicity

Manipulation of local relaxation

Nanocontrol of inrtramolecular relaxation pathways

Nanocontrol of excitation dynamics

Nanoscopic control of phonon dynamics

Control of phonon density of states to manipulate intermolecular dynamics

Nanoscale electronic energy transfer

Exciton transfer and fluorescence resonance energy transfer (FRET)

Two-photon excitable aggregation enhanced nanoemitters

Optical highlighting of cells using FRET based nanoprobes

S.Kim, H.Huang, H.Pudavar, Y.Cui and P.N.Prasad, Nano Letters, submitted

Quantum-Confined Structures

Quantum Dots/Rods: New generation Diagnostic probes

- Semiconductor nanoparticles with unique, tunable optical properties
- Highly photostable
- Narrow, symmetric emission spectra
- Ease of bioconjugation
- Ability for multiplexed analysis

Applications

PEG for enhanced

colloidal stability

Antibody for

biorecognition

In vitro Imaging
In-vitro Diagnostics
Targeted Drug delivery
Theranostics

Size and composition tunable emission

NanoSi is Highly luminescent, while the bulk form is not

NANOCHEMISTRY FOR NANOEMITTERS
Nanochemistry : Synthesis of nanoparticle

Organically Modified Silica (ORMOSIL) nanoparticles

- (a) Schematic presentation of synthesis of ORMOSIL nanoparticles using AOT/Hexane reverse microemulsion system
- (b) Involved chemistry

Multifunctional (theranostics) ORMOSIL nanoparticle

Multimodal (two imaging modalities) ORMOSIL nanoparticle

Prasad et al. J. Phys. Chem. C 112, 7972-7977 (2008).

Hot Colloidal Synthesis of Semiconductor Nanocrystals

Gas Phase Synthesis of Silicon (Si) Nanocrystals

(b) etching

Top-down

Etching reduces size and provides Hydrogen termination

Hydrosilylation reaction allows subsitution of silicon into alkene bonds

(Combination of Bottom Up and Top Down Approaches)

— Bottom-up →

(a) laser pyrolysis

Size: 4-9 nm

to create organic terminated silicon QD (c) hydrosilylation

(d) micelle encapsulation

Dispersion: Organic solvents — Surface modifications —

Aqueous

Prasad et al. ACS Nano, **2011**, 5 (1), pp 413–423

NEAR IR NANOEMITTERS

Near IR Nanoemitters for Bioimaging

NEAR-INFRARED PHOSPHORESCENCE FOR BIOIMAGING

Collaboration with USC (Prof. M.E.Thompson)

Rare-Earth Doped Upconversion Nanocrystals with NIR-to-NIR Photoluminescence

Nanoscale control of energy transfer excitation dynamics

Enhanced NIR-to-NIR upconversion PL in cubic NaYF₄:Yb³⁺ /Tm³⁺ nanocrystals by optimizing Yb³⁺ concentration

Chen, G., Ohulchanskyy, T.Y., Prasad, P.N et al ACS Nano 4(6), 3163 (2010)

Nanocontrol of surface induced nonradiative processes

Enhancement of NIR-to-NIR upconversion PL in cubic **NaYbF₄:Tm³⁺ / CaF₂** core/shell nanocrystals

Quantum yield in 30 nm sized cubic core/shell nanoparticles reaches 0.6% (the highest up to date at low power excitation)

Prasad et al., submitted, 2012

In vitro and In vivo Bioimaging Using IR to IR Up-Conversion

In vitro imaging of Panc 1 cells

In-vivo whole body images of mouse

Nyk et al, Nano Letters 8, 3834 (2008)

How deep the IR-to-IR upconversion emisson of nanophosphors can be seen through biological tissues?

SILICON: Abundant and Non-toxic

Sand is a natural source of silicon,	
There is an abundant supply	Non-toxic by intravenous injection
	Essential trace element responsible for bone development
	Ability to readily degrade by the
Light Emission from silicon is a useful property for healthcare	body
380mg/kg of silicon injected intravenously into mice is processed by the liver	No negative effects on environment, 100% recyclable
It shows no signs of toxicity and clears after 2 months	

Near Infrared Emitting Si Quantum Dots

MULTIMODAL IMAGING

ZnO nanoprisms for multimodal nonlinear optical imaging

Phospholipid micelle encapsulated and folate targeted

- Wide gape II-VI type semiconductor material
- Hexagonal wurtzite type of structure is a noncentrosymmetric

255

- => non-zero 2nd order susceptibility
- Highly biocompatible (UV-blocker in sun-screen gel)

A.V. Kachynski et al, J Phys Chem, <u>112</u> 10721 (2008)

Upconversion Nanocrystals for Optical and MRI bimodal Imaging

P. Prasad et al, Nanoscale, 3, 2003 (2011)

HIGH THROUGHPUT FLOW DIAGNOSTICS

High throughput flow diagnostics

Microbead assay

Quantum Dot color coded antibodies

Analytes (disease expression of soluble protein in blood/saliva)

Polystyrene beads conjugated capture antibodies

EXCITATION

Spectral Multiplex Detection

Time Multiplex Detection

IN VIVO DELIVERY

Tailoring of Nanoparticle Platform

Chemical "make-up" (inorganic; organic)

biodegradable or heavymetal free components

Surface coating Bioconjugation to

enhance biodistribution and targeted delivery Shape (dots; rods; multipods)

Non-spherical shape to enhance cellular uptake

Surface hydrophilicity/ hydrophobicity

Hydrophilic surface to avoid RES capture

What Matters?

Size (1-100 nm)

< 5 nm for renal excretion

Surface charge (positive, negative, neutral)

Negative or neutral surface for unimpeded circulation

Porosity

Pore-size control of therapeutics delivery

Surface functionalization of nanoparticles

Bioconjugation of Q-dot

Biocompatible Nano-Silicon for Cancer Targeting in Live animals

Erogbogbo, Prasad et al. ACS Nano 5, 413 (2011).

Excretion of lysine-coated QD

Time dependent liver clearance of lysine-coated QDs Left: Transmission; Right: Overlay with fluorescence

Prasad et al. Small (2009), 5(17), 1997-2004.

Transferrin (Tf) modified QR for crossing BBB

LIGHT ACTIVATED AND GUIDED NANOTHERAPY

Photodynamic Therapy

Pioneered at Roswell Park

Collaboration with Roswell Park (Dr. R. Pandey)

Nanocarrier delivery

ORMOSIL Nanoparticles with Intraparticle Heavy-Atom Effect to Enhance Intersystem Crossing

S.Kim, P.N.Prasad et al, J. Phys. Chem.C 2009, 113 (29), 12641

ORMOSIL Nanoparticles Coencapsulating Photosensitizing Drug and Fluorescent Dye Aggregates for Two-Photon Activated PDT

ORMOSIL nanoparticles entrapping HPPH/BDSA

Cells treated with ORMOSIL-HPPH/BDSA nanoparticles before and after excitation at 850 nm

S. Kim, et al., J. Am. Chem. Soc. (2007), 129(9); 2669-2675

Upconversion photodynamic therapy with ormosil nanoparticles coentrapping the upconverting nanophosphors and PDT drug

NP only

HPPH + NP

Energy transfer between Yb/Er nanophosphors and photosensitizer (HPPH) co-entrapped within ormosil nanoparticles

Panc-1 cells treated with ormosil nanoparticles entrapping the upconverting Yb/Er nanophosphors (A), HPPH (B) and coentrapping both the upconverting Yb/Er nanophosphors and HPPH (C).

All cells were irradiated with 980 nm

R.Kumar, T.Y.Ohulchanskyy, P.N.Prasad, unpublished

Gene delivery using nanoparticles

Electrostatic gene condensation
Efficient cellular entry
Non-toxicity
High gene expression/silencing

Nano-Biophotonics and Gene Delivery

Organically modified silica (ORMOSIL) cationic nanoparticles as DNA carriers for gene therapy

Optically Trackable ORMOSIL *Nanoparticles for Gene Delivery*

I. Roy, T. Y. Ohulchanskyy, D. J. Bharali, H. E. Pudavar, R. A. Mistretta, N. Kaur, and P. N. Prasad. PNAS, 102 (2): 279 (2005).

Can We Live for 1,000 Years ?

Yesterday's imagination

Fountain of youth and longevity

Today's Innovations

Nanomedicine defining the path to Rejuvenation Therapy

Tomorrow's patient care

Health, Wellness and Longevity

Nanomedicine for Rejuvenation Therapy

Free radical removal

Heavy metal removal

therapy

Stem cell therapy

Tissue engineering and organ printing

Stem cell Nanotechnology

Nanotechnology based Tissue Engineering

Tissue regeneration

Assembling and Differentiation of Cells on a Biodegradable Scaffold

Organ/tissue printing

Printing of 3-D Assembly of Cells in a Gel Matrix to Generate Tissue Structures and Organs

Tissue nanoengineering

<u>Tissue bonding</u> Repair of a Tissue Fracture or Tear by Welding or Soldering

Non-human primate nanotoxicity studies

Blood chemistry, behavioral and histological studies indicated no toxicity

Ye, L., Yong, K.-T., Liud, L., Roy, I., Hu, R., Zhu, J., Cai, H., Law, W.-C., Liu, J., Wang, K., Liu, J., Liu, Y., Hu, Y., Zhang, X., Swihart, M.T., and Prasad, P.N. *Nature Nanotechnology* 7, (2012).

Opportunities

- Photostable, Biodegradable, nontoxic and water dispersible Near IR Nanoemitters with high quantum yield
- Optical functionalities coupled with other functionalities
- Multidimensional and functional imaging, combining biosensing
- MEMS/NEMS, micro/nano fabrication, integrated optics for minituarization
- Nanoemitter based Microarray technology
- Nanoparticle tracking and photoactivation for Gene delivery, Stemcell biotechnology and Tissue Engineering
- Light activated and light guided therapy

Acknowledgements

<u>UB team</u>

➢ Prof. P. Knight, MD ➢ Prof. S. Schwartz, MD >Prof. M. Swihart ≻Prof. E. Morse > Prof. K. Tramposch ➢Prof. J. Feng ≻Dr. S. Mahajan ≻Dr. I. Roy >Dr. K.T. Yong ≻Dr. T. Ohulchanskyy >Dr. A. Kachynski >Dr. A. Kuzmin >Dr. A. Pliss >Dr. A. Baev >Dr. F. Erogbogbo >Dr. W.C. Law ≻Dr. W.J. Kim >Dr. A.Kopwitthaya

Outside Collaborators

Prof. R. Pandey
Dr. P. Wallace
Dr. U. Sinha, MD
Dr. R. Masood
Dr. A. Maitra, MD
Prof. A. Gomes
Prof. J. Qu

AFSOR National Cancer Institute National Science Foundation AFRL OISHEI FOUNDATION

"Lighting the Way to Technology through Innovation"

Thank you!

P.N.Prasad

The Institute for Lasers, Photonics and Biophotonics

www.photonics.buffalo.edu

Stimulated Raman vs CARS

Ground state

• SRS: Stokes wave used to form SRS

Different approach: water soluble two-photon absorbing nitrosyl complex for light activated therapy through nitric oxide release

Percentage of cell survival of Cos-7 cells, after treatment with 2P-M and subsequent irradiation with 775 nm laser light for 5 minutes (with reference to untreated cells under dark as having 100 % survival).

Q. Zheng, A. Bonoiu, T. Y. Ohulchanskyy, G. S. He and P. N. Prasad, Mol. Pharmaceutics, 5 (3), 389–398 (2008)

Synthesis of Up-conversion Nanocrystals

Prasad et al. ACS Nano, 2012, 6 (4), pp 2969–2977