Persistent Luminescent Nanoparticules for Optical Imaging Applications

T. Maldiney, A. Lecointre, A. Bessière, F. Pellé D. Gourier, C. Richard, D. Scherman, <u>B. Viana</u>

LCMCP; Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France UPCG; Inserm, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, Chimie Paristech, Paris, F-75231 cedex France

de Paris

Introduction

in vivo imaging : **non invasive** method

Medicine

- Fast diagnostic
- Biodistribution of medicine
- Control of metabolisms

Biomedical research

- Preclinic studies
- Longitudinal study
- Evaluation on small animal

Introduction

Use of nanoprobes in optical imaging

cole nationale supérieure de chimie de Paris

Introduction

Optical imaging

Classical system

<u>Principle</u> **1**- Injection of a chromophor (organic QuantumDots...)

2- *in vivo* UV-VIS excitation or IR excitation in the case of multiphotonique process

3- Fluorescence detection

Pb : tissues autofluorescence

Problems related to optical imaging

Tissue autofluorescence

Autofluorescent Subtraction with Filters

Em Filter

Excitation

Emission Autofluorescence

Excitation/emission

Bkg Filter Ex Filter 1.0Normalized Intensity 0.8

1.2

0.6

0.4

0.2

Chimie ParisTech École nationale supérieure de chimie de Paris

Is it possible to have emission

without excitation ?

Case of the Bioluminescence (Pr Rao talk):

oxydation of the <u>luciferine</u> with ATP and with Mg as catalyst Oxydation and departure of adenosine phosphate, then relaxation and emission of light

Aequorea victoria

Green Fluorescent Proteins

The railroad-worm *Phrixothrix hiatus* (actually abeetle larva) produces red light from its head, and green light along the rest of its body. © 1998 V. Viviani

The ' railroad worm (*phengodidae*)

The interest of the Bioluminescence is that there is no excitation required

In Vivo Comparison of Bioluminescence and Fluorescence (I.M.)

- Fluorescent signal is limited by tissue autofluorescence
- The bioluminescent signal level is ~300x lower, yet the signal to background is 160x higher

Bioluminescence

Background flux ~ 2.6 x 10³ p/s Signal flux ~ 2.8 x 10⁶ p/s Signal/background ~ 1100 Min. detectable cells ~ 900

Background flux ~ 1.2 x 10⁸ p/s Signal flux ~ 8.3 x 10⁸ p/s Signal/background ~ 6.7 Min. detectable cells 150,000 Left: 1 x 10⁶ HeLa-luc/PKH26 cells Right: 1 x 10⁶ HeLa-luc cells

Fluorescence

No signal autofluorescence But much smaller intensity !

From web

Chimie Paris Tech

Êcole nationale supérie

Solutions for in vivo imaging :

LETTER pubs.acs.org/NanoLett

Solution Wavelength Management

Up-conversion (Pr Capobianco talk)

NANO LETTERS

Mesoporous Multifunctional Upconversion Luminescent and Magnetic "Nanorattle" Materials for Targeted Chemotherapy

Fan Zhang^{*,†} Gary B. Braun,[‡] Alessia Pallaoro,[‡] Yichi Zhang,[‡] Yifeng Shi,[‡] Daxiang Cui,[§] Martin Moskovits,[‡] Doneyuan Zhao.[†] and Galen D. Stuckv^{*,†}

Nano Lett. (2012), 12, 61-67

Down-conversion IR-conversion Nanoscale, 3, 3705-3713 (2011)

LOW Îcole nationale supérieure de chimie de Paris

Long decay and/or enhancement of the decay with temperature

C**himie ParisTech** École nationale supérieure de chimie de Paris **Persistent luminescence**

Requirement for efficient persistent luminescence

Efficient luminescent materials :

Need to avoid non radiative processes

***** For applications :

Avoid or enhance point defects?

No traps

Phosphors for cathodic tubes

Scintillators in medical imaging

Requirement for efficient persistent luminescence

Efficient luminescent materials :

Need to avoid non radiative processes

***** For applications :

cole nationale supérieure de chimie de Paris

This is possible with materials with persistent luminescence

PartsTech

1) Introduction Outline

2) Part 1 : Interest of the persistent luminescence in optical imaging

3) Part 2 : Persistent luminescence in the red range :case of CaMgSi₂O₆:Mn NP's and exemples of optical imaging

4) Part 3 : New materials and interest for *invivo* optical imaging

1) Introduction Outline

2) Part 1 : Interest of the persistent luminescence in optical imaging

3) Part 2 : Persistent luminescence in the red range :case of CaMgSi₂O₆:Mn NP's and exemples of optical imaging

4) Part 3 : New materials and interest for *invivo* optical imaging

Interest of the persistent luminescence

École nationale supérieure de chimie de Paris

PartiFish

Interest of the persistent luminescence

Optical « battery » : storage of the light in traps/defects Intensity

Charging time 0-200s

Decay time > hours

Interest of the persistent luminescence

Interest of the persistent luminescence for in-vivo imaging

Red and NIR LLP NPs

Rabbit 4,5 kg Chimie ParisTech École nationale supérieure de chimie de Paris

Intramuscular injection on a rabbit

Interest of the persistent luminescence for in-vivo imaging Sensitivity

École nationale supérieure de chimie de Paris

Intraveinal injection

Intramuscular injection

1) Introduction Outline

2) Part 1 : Interest of the persistent luminescence in optical imaging

3) Part 2 : Persistent luminescence in the red range :case of CaMgSi₂O₆:Mn NP's and exemples of optical imaging

4) Part 3 : New materials and interest for *invivo* optical imaging

Material synthesis

The long-lasting fluorescent material

For instance : Sol-gel synthesis

Material synthesis

Matérials Characterization

échelle : 200 nm

Chimie Paris Tech École nationale supérieure de chimie de Paris

NPs : Preparation, size and cristallinity,

NPs : charge and dispersion

20

25

30

35

20 (°)

40

45

50

55

7000

Intensity (arb. u.)

Allowed transition (fast decay) when : i) $\Delta S = 0$ (non spin variation)

ii) $\Delta l = +/- 1$ (charge transfer, s-p Transition, f-d transition, etc...

iii) Vibration betweentwo close energylevels

iv) Energy transfer with resonant levels

Characteristic times for the absorption, the fluorescence, the phosphorescence and the non radiatifs processes

Chimie Paris Tech École nationale supérieure de chimie de Paris cnrs

Origin of the emission

Chimie Paris Tech École nationale supérieure de chimie de Paris

Origin of the emission

No « classical » emission can explain such long emission time !!

Persistent luminescence : a different origin !!

- Mn²⁺ participate to the capture step + energy transfer
- Mn²⁺ : recombination center & hole traps
- Electron traps at the origin of the persistent luminescence

Material characterization

better understanding of the optical properties and traps origin Luminescence of CaMgSi₂O₆:Mn²⁺ (CMSO:Mn)

2 surrounding for Mn

TSL a good tool to investigate the persistent luminescence 3D Thermally stimuled luminescence spectra $CaMqSi_2O_6: Mn^{2+}$

Better temperature range for intensive persistent luminescence

TSL a good tool to investigate the persistent luminescence 3D Thermally stimuled luminescence spectra

 $CaMgSi_2O_6$: Mn^{2+} , Dy^{3+}

modifiy the TSL peaks

 $CaMqSi_2O_6$: Mn^{2+}

Mechanisms

Increase of the persistent Luminescence ? other codopant ? Other e⁻ traps ?

Chimie ParisTech Leafe nationale superieure de chimie A Lecointre; A. Bessiere; A.J.J. Bos; P. Dorenbos, B. Viana and S. Jacquart Journal of Physical Chemistry C 115, 10, 4217-4227 (2011)

Variation of the RE codopant in CaMgSi₂O₆:RE,Mn²⁺

Improved Materials

PartiFicch

Persistent luminescence in CaMgSi₂O₆:Mn²⁺, Ln³⁺

T. Maldiney et al., J Am Chem Soc. (2011), 133 (30) 11810-11815.

Improved Materials

Results on small animals imaging

Luminescence after 30 min.

<0.0

58.0>

Improved Materials

Persistent luminescence nanoprobes for in vivo imaging

Are the NPs after functionalization still efficient ?

Chimie Paris Technick, et al. ACS Nano 5, 2 854-862 (2011)

Selection of 3 size populations: 80 nm ; 120 nm ; 180 nm (hydrod. diameter of crude PLNP)

Exemples of optical imaging

Small Animal Imaging

1) Introduction Outline

2) Part 1 : Interest of the persistent luminescence in optical imaging

3) Part 2 : Persistent luminescence in the red range :case of CaMgSi₂O₆:Mn NP's and exemples of optical imaging

4) Part 3 : New materials and interest for *invivo* optical imaging

ZnGa₂O₄:Cr³⁺

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, D. Gourier, "ZnGa₂O₄:Cr³⁺ : a new red long-lasting phosphor with high brightness", *Opt. Exp.* 19(11) (2011) 10131-10137

Search of others new materials

Persistent luminescence emitted through Cr³⁺_{distorted} and composition variation (stœchiometry effect)

- *in vivo* injection of NPs (100 μg)
- healthy mice
- biodistribution after 15 minutes

(ROI drawings on liver and spleen)

Maldiney et al. CNRS patent, Num. 1000138662, 2012.

Search of others new materials

Higher LLP and new devices

in $Ca_2Si_5N_8$: Tm^{3+}, Eu^{2+} ?

Material preparation

NPs by Pulsed Laser Ablation in Liquids G. Ledoux et al. Nanotechnology, 20, 445605 (2009).

NPs by top-down size selection

Search of others new materials

Ca₂Si₅N₈ : Tm³⁺,Eu²⁺

CSN-OH (mouse A) and CSN-PEG (mouse B), 15 minutes after tail vain injection

Ca₂Si₅N₈ : Tm³⁺,Eu²⁺ *f-d* type intensive transitions: Emission in the red and excitation in the green

PartiTech

1) Introduction Outline

2) Interest of the persistent luminescence in optical imaging

3) Persistent luminescence in the red range : case of CaMgSi₂O₆:Mn NP's and exemples of optical imaging

4) New materials and interest for *in-vivo* optical imaging
5) Conclusions

Chimie ParisTech École nationale supérieure de chimie de Paris

Conclusions

Summary : our purpose

- Find new materials for optical imaging or optimization of functional materials
- Control of the kinetic processes (codoping and/or thermal treatment)
- Increase of the luminescence yield
- Mechanisms study
- Concept transfer to biologists for developments

Thanks to :

