Superconductivity in Heavy Fermions

Outline:

- Magnetism and the Kondo effect in f-electrons
- A brief history of heavy fermion superconductors
- Open questions
- Summary

Common belief that magnetism is bad for SC

M. B. Maple, Phys. Lett. A **26**, 513 (1968)

M. B. Maple et al., SSC 11, 829 (1972)

1 magnetic impurity: Kondo effect

At T = 0, a renormalized Fermi liquid including an f-electron. • Los Alamos A many-body effect (Wilson renormalization)

1 magnetic impurity: Kondo effect

New Kondo lattice fixed point

New Kondo lattice fixed point: Heavy fermions

K. Andres, J. E. Graebner, H. R. Ott, PRL 35, 1779 (1975)

Multiple magnetic impurities: RKKY effct

The Kondo scale is: $T_K \approx \exp(-1/J)$

The RKKY scale is: $T_{RKKY} \approx J^2$

Surprise superconductivity in CeCu₂Si₂

Well below $T^* = 10$ K, a large γT term predominates the specific heat. We interpret this term as being due to very heavy fermion quasiparticles with degeneracy temperature $T_F \simeq T^*$.

The size of the specific-heat jump at T_c , in proportion to γT_c , suggests that Cooperpair states are formed by these heavy fermions.

Since the Debye temperature, Θ , is of the order of 200 K,⁵ we find $T_c < T_F < \Theta$ with $T_c/T_F \simeq T_F/\Theta$ $\simeq 0.05$. This suggests that CeCu₂Si (i) behaves as a "high-temperature superconductor" and (ii) cannot be described by conventional theory of superconductivity which assumes a typical phonon frequency $k_B\Theta/h \ll k_BT_F/h$, the characteristic frequency of the fermions.

NNS

U-based SCs – unconventional superconductivity

In the mid 80's superconductivity in UBe_{13} and UPt_3 confirmed the $CeCu_2Si_2$ results. There also appeared multiple superconducting phases.

R.A. Fisher *et al.* PRL **62**, 1411 (1989); G. Bruls *et al.*, PRL **65**, 2294 (1990); S. Andenwalla *et al.*, PRL **65**, 2298 (1990); H.R. Ott *et al.*, PRB **31**, 1651 (1985)

U-based SCs – unconventional superconductivity

The observation of power laws in specific heat suggested nodal behavior with an unconventional order parameter.

Superconductivity on the border of AF instabilities

"The one place we know where to find superconductors is at the quantum critical point of cerium based antiferromagnets" ~ Zach Fisk

Many varieties of heavy fermion SC's exist:

Open Questions

What is the pairing mechanism?

Open Questions: Role of Dimensionality

Tc set by strength of spin fluctuations

J.L. Sarrao, and J.D. Thompson, J. Phys. Soc. Jpn. 76, 051013 (2007)

Open Questions: Spin and Charge Fluctuations

H. Hegger, *et al.* PRL (2000) T. Park, *et al.* Nature (2008) Alamos

Open Questions: Spin and Charge Fluctuations

Operated by Los Alamos National Security, LLC for NNSA

MSX

Open Questions: Spin and Charge Fluctuations

H. Yuan, et al. Science (2003)

Open Questions: Role of competing phases

Highly tunable ground states

M. Bachmann, *et al*. ArXiv:1807.05079

Small energy scales leads to highly tunable ground states. Can one make a superconducting switch on this premise?

Open Questions: Superconducting Order Parameter

CeColn₅ : d_{x2-y2} **UPt**₃ : E_{2u}

In general, very few phase sensitive experiments exist

CeCu₂Si₂ was generally believed to be a d-wave SC, until...

S. Kittaka et al., PRL 112, 067002 (2014)

Open Questions: Topological Superconductivity

Operated by Los Alamos National Security, LLC for NNSA

0

 $V_{\rm h}$ (mV)

-1

L. Jiao, et al. arXiv:1908.02846

0

 $V_{\rm h}$ (mV)

Advantages and Disadvantages of HF SCs

Advantages

- Small Energy Scales (highly tunable!)
- Often Stoichiometric (Ultra high purity mean free paths > 1 um !)
- T_c varies by 2 orders of magnitude (0.2K in Celn₃ 20 K in PuCoGa₅)
- Physics often analogous to 3d physics
 - E.g. In CeCoIn₅ $T_c/T_F = 2.3 \text{ K}/41 \text{ K} = 0.056$ which is even greater than the high T_c cuprates $T_c/T_F = 95 \text{ K}/2400 \text{ K} = 0.040$
- Strong spin-orbit coupling good for topologically non-trivial states

Disadvantages

- Small Energy Scales (normal state not well understood or characterized!)
- Complex electronic structures
- U and Pu are radioactive (can be a feature)

