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Single- and two-particle energy gaps across the
disorder-driven superconductor–insulator transition
Karim Bouadim, Yen Lee Loh, Mohit Randeria and Nandini Trivedi*
The competition between superconductivity and localization raises profound questions in condensed-matter physics. In spite
of decades of research, the mechanism of the superconductor–insulator transition and the nature of the insulator are not
understood.Weuse quantumMonte Carlo simulations that treat, on an equal footing, inhomogeneous amplitude variations and
phase fluctuations, a major advance over previous theories. We gain new microscopic insights and make testable predictions
for local spectroscopic probes. The energy gap in the density of states survives across the transition, but coherence peaks exist
only in the superconductor. A characteristic pseudogap persists above the critical disorder and critical temperature, in contrast
to conventional theories. Surprisingly, the insulator has a two-particle gap scale that vanishes at the superconductor–insulator
transition, despite a robust single-particle gap.

Attractive interactions between electrons lead to super-
conductivity, a spectacular example of long-range order in
physics, whereas disorder leads to localization of electronic

states. One of the most fascinating examples of the interplay
between the effects of interactions and localization is the destruction
of superconductivity in thin films with increasing disorder and the
resulting superconductor–insulator transition (SIT; refs 1–9).

It was recognized decades ago that s-wave superconductivity
(SC) is remarkably robust against weak disorder10,11. It was later
argued12 that SC can survive even when disorder localizes the
single-particle states. Thus the SIT must occur in a strong disorder
regime that is difficult to treat theoretically in an interacting system.
Critical phenomena at the SIT have been described in terms of
disordered bosons13, which model fermion pairs and describe
phase fluctuations of the SC order parameter. A more microscopic
description must necessarily start with the fermionic degrees of
freedom. A Bogoliubov–de Gennes (BdG) treatment of attractive
electrons in a randompotential shows that the SCpairing amplitude
becomes spatially inhomogeneous with strong disorder14–16. This
leads to a robust energy gap and a large suppression of the superfluid
density14,15. However, the phase fluctuations ultimately responsible
for the SIT are beyond the BdG approach and are treated in an
approximate manner14,15,17.

In this paper we make a major advance using quantum Monte
Carlo (QMC) simulations on a fermionic model that includes
thermal and quantum fluctuations of the SC phase and the
spatially inhomogeneous amplitude on an equal footing. As well
as confirming the bosonic mechanism for the SIT, our work also
gives new insights into the experimentally observable electronic
spectral functions.Our results provide uswith a detailed description
of the phases, the transition, and the quantum critical region at
finite temperature.

Our main results are as follows:
(1) Single-particle gap: at T = 0 the gap in the single-particle

density of states (DOS) survives through the SIT, so that one goes
from a gapped superconductor to a gapped insulator. Although the
local gap extracted from the local density of states (LDOS) is highly
inhomogeneous, it is nevertheless finite at every site.

(2) Coherence peaks: These characteristic pile-ups in the DOS
at the gap edges are directly correlated with superconducting order
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and vanish as the temperature is raised above Tc, or as the disorder
is increased across the SIT.

(3) Pseudogap: Near the SIT, a pseudogap—a suppression in
the low-energy DOS—persists well above the superconducting Tc
up to a crossover temperature scale T ⇤, in marked deviation from
BCS theory. This disorder-driven pseudogap also exists at finite
temperatures in the insulating state and growswith disorder.

(4) Two-particle gap: There is a characteristic energy scale !pair
to insert a pair in the insulator that collapses on approaching the
SIT from the insulating side. In addition, the two-particle spectral
function may also have a very small spectral weight at low energies
coming from rare regions.

Our predictions for the local tunnelling DOS and the dynamical
pair susceptibility as a function of temperature and disorder have
the potential to guide future experiments using scanning tunnelling
spectroscopy18–21 and other dynamical probes22.

Model and methods. To model the competition between super-
conductivity and localization that leads to the SIT in quench-
condensed films with thicknesses less than the coherence length, we
take the simplest lattice Hamiltonian that has an s-wave supercon-
ducting ground state in the absence of disorder (V =0) and exhibits
Anderson localization when the attractive interaction is turned off
(U = 0). Thus, we study the two-dimensional attractive Hubbard
model in a random potential:
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0, spin indices � = " or #, fermion
creation and annihilation operators c †

R� and c
R� , number operators

n
R� = c †

R� cR� , hopping t between neighbouring sites hRR0i, and a
chemical potentialµ chosen such that the average density is hni 6=1.
V

R

is a random potential at each site drawn from the uniform
distribution on [�V ,+V ], and |U | is the on-site attraction leading
to s-wave SC.Wewill measure all energies in units of t .

We use the determinantal QMC method23, which is free of the
fermion sign problem for the Hamiltonian of equation (1). We
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insights in the weak- and strong-disorder limits.
The noninteracting disordered Hamiltonian H0 of Eq. !1"

is quadratic and leads to an eigenvalue problem, which is, in
principle, soluble: H0!#$%!&$!#$%, where $ labels the ex-
act eigenstates of H0 . Following Anderson let us imagine
pairing electrons in time-reversed eigenstates $ ,↑ and $ ,↓ .
The analog of the ‘‘reduced BCS’’ Hamiltonian in this basis
is then given by
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† c$ ↓
† c* ↓c*↑ , !12"
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Here )$!(&$"+̃) is measured relative to the average
Hartree-shifted +̃ , which fixes the electronic density. !We
will return to the question of average versus site-dependent
Hartree shifts later in this section." A BCS-like analysis of
Eq. !12" leads to the T!0 gap equation
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Our formulation generalizes Anderson’s original analysis by
retaining the full M $ ,* , and it is the structure of this matrix

that will permit us to access the large disorder regime with
highly inhomogeneous pairing.

A. Nonmonotonic behavior of the energy gap

We now present a qualitative analysis of the large and
small disorder limits of the above equations, together with
their full numerical solution. Finally, these will be compared
with the BdG results of the previous section.
Let us begin with the low disorder regime. For a finite

system in two dimensions, or an infinite system in three di-
mensions, the eigenstates #$(ri)’s are extended on the scale
of system. We thus find M $ ,*.1/N , independent of $ and * ,
which we call the ‘‘uniform approximation’’ for M. The gap
equation takes the simple BCS form, , is !spatially" uni-
form, and Anderson’s theorem applies in this limit.
The behavior of Egap within ‘‘uniform approximation’’ is

shown in Fig. 12!a" for low V. The decrease of Egap with
increasing V in this regime can be traced primarily to a
simple density-of-states effect in the BCS result for the gap.
For the nearest-neighbor 2D dispersion and the filling cho-
sen, one finds that the average DOS at the chemical poten-
tial, N ()!0), decreases with increasing V in the weak-
disorder limit.

FIG. 11. Gray-scale plot of the matrix elements of M $ ,* at large
disorder V!6t for a 30$30 noninteracting system. The x and y
axes are the $ and * indices, respectively. Note that diagonal ma-
trix elements are the largest.

FIG. 12. Upper panel !a": Comparison of the energy gap Egap as
a function of disorder obtained by the generalized exact eigenstates
method (!) and the BdG approach ("), both implemented with an
average Hartree shift. Also shown are two asymptotic solutions for
the gap at low (#) and high !pentagons" disorder. The decrease of
Egap at small V is a DOS effect, described by the ‘‘uniform approxi-
mation’’ !see text". The increase of Egap at large V due to strong
localization effects on the single-particle wave functions is de-
scribed by the ‘‘diagonal approximation’’ !see text". Lower panel
!b": Comparison of Egap as a function of disorder calculated within
the BdG approach with an average and a site-dependent Hartree
shift. While the two results are qualitatively similar, there are quan-
titative differences.
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We next comment on the choice of parameters. We have
studied the model !1" for a range of parameters, 0.8#!U!/t
#8, 0.2#$n%#0.875, and a wide range of disorder on lat-
tices of sizes up to N!36"36. In Ref. 14 we reported results
mainly for !U!/t!4. Here we focus on weaker coupling
!U!/t!1.5 and $n%!0.875 on systems of typical size 24
"24. We have taken care to work on systems with linear size
larger than the coherence length & .20

III. BOGOLIUBOV–DE GENNES MEAN-FIELD THEORY

We begin with a very brief review of the BdG mean-field
theory,21 mainly to introduce notation. The mean-field de-
composition of the interaction term gives expectation values
to the local pairing amplitude and local density,

'!ri"!#!U!$ci↓ci↑%, $ni(%!$ci(
† ci(%, !2"

and yields an effective quadratic Hamiltonian

Heff!#t )
$i j% ,(
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i
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† ci↓

† $'*!ri"ci↑ci↓, , !3"

where *̃ i!*$!U!$ni%/2 incorporates the site-dependent
Hartree shift. Here $ni%!)($ni ,(%. Heff is diagonalized by
the transformation
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n

+-n↑un!ri"#-n↓
† vn*!ri", ,

ci↓!)
n

+-n↓un!ri"$-n↑
† vn*!ri", , !4"

where - and -† are the quasiparticle operators. un(ri) and
vn(ri), which satisfy )n!un(ri)!2$!vn(ri)!2!1 for each ri ,
are obtained from

" K̂ '̂

'̂* #K̂*# " un!ri"vn!ri"
# !En" un!ri"vn!ri"

# , !5"

where the excitation eigenvalues En.0. K̂un(ri)!
#t) !̂un(ri$ /̂)$(Vi#*̃ i)un(ri), where !̂!% x̂,% ŷ, and
'̂un(ri)!'(ri)un(ri), and similarly for vn(ri). The self-
consistency conditions are given by

'!ri"!!U!)
n
un!ri"vn*!ri",

$ni%!2)
n

!vn!ri"!2. !6"

We solve the BdG equations !5" on a finite lattice of N
sites with periodic boundary conditions, as follows. Starting
with an initial guess for the pairing amplitude 0'(ri)1 and
the chemical potential 0*̃ i1 at each site, we numerically de-
termine the eigenvalues En and eigenvectors „un(ri),vn(ri)…

of Eq. !5". We then compute 0'(ri)1 and 0$ni%1 from Eq. !6".
If these values differ from the initial ones, the whole process
is iterated with a new choice of 0'(ri)1 and 0$ni%1 in Eq. !5"
until self-consistency is achieved at each site. The chemical
potential * is determined by (1/N)) ini!$n%, the given av-
erage density. Note that '(ri), u(ri), and v(ri) can be cho-
sen to be real in the absence of a magnetic field.
We have checked that the same solution is obtained for

different initial guesses. However, the number of iterations to
obtain self-consistency grows with disorder. All the results
are averaged over 12–15 different realizations of disorder for
a given disorder strength V.
We emphasize that, while the BdG theory has been exten-

sively used recently for disordered d-wave
superconductors,22,23 in many cases full self-consistency at
each site is not attained, and in almost no case, except for
Refs. 14 and 23, has the inhomogeneous Hartree shift been
retained. The nontrivial results obtained in this paper depend
in a crucial way on fully self-consistent inhomogeneous so-
lutions, as will become clear.

A. Local pairing amplitudes and off-diagonal long-range order

The ground state energy of the inhomogeneous BdG so-
lution is always lower than that obtained by forcing a uni-
form pairing amplitude, with the difference between them
increasing with V. In Fig. 2 we plot the distribution P(') of
the self-consistent local pairing amplitude '(ri) for several
values of the disorder V. For V!0 the BdG solution has a
uniform pairing amplitude '0$0.153t , the BCS value. For
low disorder V!0.1t , the distribution P(') has a sharp peak
about '0, which justifies the use of a homogeneous mean-
field theory !MFT" for small disorder !as, e.g., in the deriva-

FIG. 2. Distribution of the local pairing amplitude '(r) for
various disorder strengths. At low disorder the distribution P(') is
sharply peaked around '020.15, the pure BCS value for !U!
!1.5t . P(') becomes broad with increasing V and finally at a very
large disorder gains significant weight near '20.
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form pairing amplitude, with the difference between them
increasing with V. In Fig. 2 we plot the distribution P(') of
the self-consistent local pairing amplitude '(ri) for several
values of the disorder V. For V!0 the BdG solution has a
uniform pairing amplitude '0$0.153t , the BCS value. For
low disorder V!0.1t , the distribution P(') has a sharp peak
about '0, which justifies the use of a homogeneous mean-
field theory !MFT" for small disorder !as, e.g., in the deriva-

FIG. 2. Distribution of the local pairing amplitude '(r) for
various disorder strengths. At low disorder the distribution P(') is
sharply peaked around '020.15, the pure BCS value for !U!
!1.5t . P(') becomes broad with increasing V and finally at a very
large disorder gains significant weight near '20.
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#8, 0.2#$n%#0.875, and a wide range of disorder on lat-
tices of sizes up to N!36"36. In Ref. 14 we reported results
mainly for !U!/t!4. Here we focus on weaker coupling
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in a crucial way on fully self-consistent inhomogeneous so-
lutions, as will become clear.
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lution is always lower than that obtained by forcing a uni-
form pairing amplitude, with the difference between them
increasing with V. In Fig. 2 we plot the distribution P(') of
the self-consistent local pairing amplitude '(ri) for several
values of the disorder V. For V!0 the BdG solution has a
uniform pairing amplitude '0$0.153t , the BCS value. For
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In this supplement we provide details of the determi-
nantal QMC simulations, comparison between QMC and
inhomogeneous Bogoliubov-de Gennes (BdG) mean-field
theory, and the analytic continuation procedure for ex-
tracting real frequency information from imaginary time
QMC data.

Determinantal QMC: We use the determinantal
Quantum Monte Carlo (QMC) algorithm [1, 2] to
calculate the quantities discussed in the paper, in-
cluding the imaginary-time Green function G(R; τ) =
−

〈
Tτ cRσ(τ)c†Rσ(0)

〉
and pairing correlation function

P (τ) =
∑

R

〈
TτF (R; τ)F †(R; 0)

〉
where F (R, τ) =

cR↓(τ)cR↑(τ). We present results for 8 × 8 square lat-
tices with periodic boundary conditions. The lattice size
is dictated by the need for very accurate QMC data re-
quired for analytic continuation.

For a given set of parameters, the simulations are equi-
librated for up to 4 × 105 Monte Carlo steps. The final
averages for a single disorder realization are taken over
2 × 105 steps for static quantities and over 4 × 106 for
dynamical quantities. We further average over 10 disor-
der realizations for a given disorder strength. The re-
sulting maximum absolute errors are δG(τ) ∼ 10−4 and
δP (τ) ∼ 10−2. We have checked the main features in the
density of states – the hard gap at all V , and the coher-
ence peaks for V ! Vc – using extensive simulations with
an average over 100 disorder realizations (Fig. 1).

Comparisons of QMC with BdG: In Fig. 2 we
show a comparison of the local density n(R) obtained
using QMC and self-consistent BdG, including inhomo-
geneous Hartree shifts, for one disorder pattern at dif-
ferent disorder strengths. The close agreement indicates
that phase fluctuations, not included in BdG, have very
little effect on n(R). On the other hand, the superfluid
stiffness and spectral properties at finite temperatures
and large disorder are greatly affected by thermal and
quantum phase fluctuations.

The local density is directly related to the occupied
and unoccupied part of the LDOS (see Fig. 4 of the pa-
per) via the sum rules: 2

∫ ∞
−∞ dωf(ω)N(R, ω) = n(R)

and 2
∫ ∞
−∞ dω[1− f(ω)]N(R, ω) = 2− n(R), where f(ω)

is the Fermi function and the factor of 2 comes from spin
degeneracy. We have tested these sum rules for the calcu-
lated LDOS and find excellent agreement. Further sum
rule tests are described below.

Analytic continuation for Green’s function: We
use the maximum entropy method (MEM) to extract the

FIG. 1: Comparison of results for the density of states av-
eraged over (A) 10 and (B) 100 disorder realizations. The
main features, i.e., hard gaps for all disorder strengths and
coherence peaks for V < Vc, are robust. Note the reduced
statistical fluctuations in panel B with the increase in the
number of disorder realizations.

local density of states N(R, ω) from the imaginary-time
Green function G(R; τ). The MEM for analytic contin-
uation [3] essentially inverts the Laplace transform

G(R; τ) = −
∫ ∞

−∞
dω

e−τω

1 + e−βω
N(R, ω). (1)

The average DOS N(ω) is obtained from analytic contin-
uation of

∑
R G(R, τ).

We have performed extensive tests using known model
spectra as follows: (i) choose a test spectrum N(ω); (ii)
perform a Laplace transform to obtain the imaginary-
time Green function G(τ); (iii) add random numbers
δG(τ) drawn independently from a normal distribution
of width δG = 10−4, in order to simulate Monte Carlo
statistical error; and finally (iv) feed the resulting noisy
data, Gdata(τ), into our MEM routine. This procedure is
illustrated in Fig. 3. We have concluded that the MEM
is adequate for extracting the low-energy features of the
spectrum, particularly the gap.

Sum rules: We have also made extensive sum-rule
checks for the spectra obtained from MEM. We define
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states are pushed to higher energies. However, the gap in the
spectrum remains finite.
The energy gap Egap is obtained directly as the lowest

eigenvalue of the BdG matrix in Eq. !5". We plot the evolu-
tion of Egap with disorder in Fig. 5, and see that it not only
remains finite, it even increases at high disorder.
These results are counterintuitive. Given the broad distri-

bution P(#) !Fig. 2" at high disorder, with #$0 at many
sites, one might have expected the spectral gap to also col-
lapse. However, this expectation is based on an !incorrect"
identification of the average pairing amplitude, or order pa-
rameter #OP , with the spectral gap Egap . While the two co-
incide at small disorder strengths, we see from Fig. 5 that the
two show qualitatively different behavior at high disorder. It
turns out that important insight into these puzzling results
can be obtained by looking at the inhomogeneities in #(ri)
in real space, as discussed below.

C. Formation of superconducting islands

In Fig. 6 we see the evolution of the spatial distribution of
the local pairing amplitude for a particular realization of the
random potential with increasing disorder strength V.
Though the random potential Vi is completely uncorrelated
from site to site, the system generates, with increasing disor-
der, spatially correlated clusters of sites with large #(ri), or
‘‘SC islands,’’ which are separated from one another by re-
gions with very small #(ri). The size of the SC islands is the
coherence length, which is controlled by the attraction !U!
and the disorder V.
We would like to emphasize that formation of the ‘‘SC

islands’’ is not simply related to the inhomogeneous electron

density profile in the presence of disorder. In Figs. 7!a" and
7!c" we show density n(ri) and #(ri) in a gray-scale plot for
a particular realization of the random potential at a disorder
strength V!3t . As expected, the density varies rapidly on
the scale of the lattice constant in response to the random
potential. This is emphasized by the density-density correla-
tions being extremely short ranged in Fig. 7!b". In contrast,
the pairing amplitude shows structure, i.e., the formation of
SC islands on the scale of the coherence length % , which is
several lattice spacings. !The coherence length20 of the cor-
responding nondisordered system is %0"10).
We next ask: where !in space" are these ‘‘SC islands’’

formed? This will be very important in our understanding of
the origin of the finite energy gap at large disorder. By cor-
relating the locations of the islands with the underlying ran-
dom potential for many different realizations, we find that
large #(r) occurs in regions where !Vi"&̃ i! is small and
allows for considerable particle-hole mixing. On the other
hand, deep valleys and high mountains in the potential en-
ergy landscape contain a fixed number of particles per site:
two on a valley site or zero on a mountain site. As a result
the local pairing amplitude vanishes in such regions.

FIG. 6. Gray-scale plot for the spatial variation of the local
pairing amplitude #(r) for a particular realization of the random
potential !same in all the panels" but with increasing disorder
strength. Note that at large V the system generates ‘‘SC islands’’
!dark regions" with large pairing amplitude separated by an insulat-
ing ‘‘sea’’ !white regions" with negligible pairing amplitude.

FIG. 7. !a" Gray-scale plot of density ni for a given disorder
realization, for V!3t , with darker regions indicating higher densi-
ties. !b" Plot of disorder-averaged correlation function nin j as a
function of the distance r'!ri"rj!. Note that density correlations
decay within a lattice constant. The y axis is scaled by ni

2 !a
V-dependent number, which is 1.27 for V!3) so that the function is
normalized to unity at r!0. !c" Gray-scale plot of of pairing am-
plitude #(ri) on the lattice for the same V and same realization as in
!a". !d" The disorder-averaged correlation function #(ri)#(rj) !nor-
malized to be unity at zero separation" showing that the correlations
persist to distances of order several lattice spacings, which is the
size of the SC islands.
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turns out that important insight into these puzzling results
can be obtained by looking at the inhomogeneities in #(ri)
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C. Formation of superconducting islands
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the local pairing amplitude for a particular realization of the
random potential with increasing disorder strength V.
Though the random potential Vi is completely uncorrelated
from site to site, the system generates, with increasing disor-
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‘‘SC islands,’’ which are separated from one another by re-
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potential. This is emphasized by the density-density correla-
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the pairing amplitude shows structure, i.e., the formation of
SC islands on the scale of the coherence length % , which is
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responding nondisordered system is %0"10).
We next ask: where !in space" are these ‘‘SC islands’’

formed? This will be very important in our understanding of
the origin of the finite energy gap at large disorder. By cor-
relating the locations of the islands with the underlying ran-
dom potential for many different realizations, we find that
large #(r) occurs in regions where !Vi"&̃ i! is small and
allows for considerable particle-hole mixing. On the other
hand, deep valleys and high mountains in the potential en-
ergy landscape contain a fixed number of particles per site:
two on a valley site or zero on a mountain site. As a result
the local pairing amplitude vanishes in such regions.
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pairing amplitude #(r) for a particular realization of the random
potential !same in all the panels" but with increasing disorder
strength. Note that at large V the system generates ‘‘SC islands’’
!dark regions" with large pairing amplitude separated by an insulat-
ing ‘‘sea’’ !white regions" with negligible pairing amplitude.

FIG. 7. !a" Gray-scale plot of density ni for a given disorder
realization, for V!3t , with darker regions indicating higher densi-
ties. !b" Plot of disorder-averaged correlation function nin j as a
function of the distance r'!ri"rj!. Note that density correlations
decay within a lattice constant. The y axis is scaled by ni
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V-dependent number, which is 1.27 for V!3) so that the function is
normalized to unity at r!0. !c" Gray-scale plot of of pairing am-
plitude #(ri) on the lattice for the same V and same realization as in
!a". !d" The disorder-averaged correlation function #(ri)#(rj) !nor-
malized to be unity at zero separation" showing that the correlations
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size of the SC islands.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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Figure 5 | Emergent granularity. a, Disorder realization V(R) on a 36⇥36 lattice at V= 3t. b, Local pairing amplitude 1op(R) from a BdG calculation at
|U| = 1.5t, T= 0, and n= 0.875. Note the emergent ‘granular’ structure where the pairing amplitude ‘self-organizes’ into superconducting islands on the
scale of the coherence length, even though the ‘homogeneous’ disorder potential in a varies on the scale of a lattice spacing. c, Local energy gap !dos(R)
from BdG, defined as the smallest energy at which the local DOS is non-zero (N(R,!) > 0.004). Note that this gap is finite everywhere and that the
smallest gaps occur on the SC islands defined by the largest pairing amplitude.

1op(R)= hc
R#cR"i generated in the presence of large disorder, as we

now explain.
We show in Fig. 5 that even for ‘homogeneous’ disorder, that

is, an uncorrelated random potential V (R) (Fig. 5a), the pairing
amplitude1op(R) exhibits an emergent ‘granular’ structure (shown
in Fig. 5b). The system self-organizes into superconducting islands,
on the scale of the coherence length, with finite1op(R), interspersed
with insulating regions where 1op(R) is negligible. The spatial
variations of spectral features (asymmetry and coherence peaks)
in this inhomogeneous state were already discussed above in
connection with Fig. 4.

The close connection between inhomogeneity and energy gaps
is made clear in Fig. 5b,c, which demonstrates two striking facts.
We see that (1) there is an energy gap in the LDOS at every site,
and (2) small gaps !dos(R) in the LDOS are spatially correlated with
large 1op(R) SC islands.

A simple way to understand these results is to use the pairing-
of-exact-eigenstates approach generalized to highly disordered
systems15. In the limit ofweak attraction, pairing leads to a gap in the
low-energy DOS in the underlying Anderson insulator and leads to
the islands with non-zero 1op and a small energy gap. On the other
hand, the insulating sea corresponds to the higher-energy strongly
localized states in the system.

From this perspective one can see that the gap !dos, observed
in the spatially average DOS, initially decreases with increasing
disorder owing to a reduction in the DOS near the chemical
potential in our model. (In a real material, the coupling will
also decrease29 with disorder.) However, at high disorder, the
gap grows (consistent with Fig. 1) like !dos ⇡ |U |/(2⇠ 2

loc), where
⇠loc is the single-particle localization length15. This is due to the
enhanced effective attraction between fermions confined to a
smaller localization volume ⇠ 2

loc.
The phase stiffness (or superfluid density) ⇢s(T = 0), on the

other hand, decreases monotonically with disorder as the SC
islands become smaller and the Josephson coupling between islands
becomes weaker. Thus, even if one starts with a weak-coupling
BCS superconductor with !dos ⌧ ⇢s, disorder will necessarily
drive it into the !dos � ⇢s regime. Eventually, quantum phase
fluctuations destroy long-range order at T = 0, leading to an
insulator with low-energy excitations that are pairs localized on
SC islands.

The low-⇢s regime on the SC side of the SIT leads to a finite-
temperature transition driven by thermal phase fluctuations30 with
Tc ⇠ ⇢s(0). The large energy gap then leads to a marked deviation
from conventional BCS theory, with a pairing pseudogap in the
the temperature range Tc ⇠< T ⇠< !dos. This pseudogap exists even
in the weak-coupling regime, provided one is close enough to the
SIT so that ⇢s ⌧ !dos.

Comparison with experiments. We describe the connection
between our predictions and experiments on the disorder-tuned
SIT in systems such as indium oxide, titanium nitride, and niobium
nitride films, forwhich our theory seems to be themost appropriate.
First, let us discuss the insulating side of the SIT. The existence of
a gap in the insulator implies activated transport, consistent with
earlymeasurements on amorphous InOx films5. Furthermore, there
is evidence for pairs on the insulating side of the transition8 in
specially patterned amorphous bismuth films.

Recent scanning tunnelling microscpy (STM) experiments are
directly relevant to our predictions on the superconducting side
of the SIT. Experiments on homogeneously disordered TiN films18
have shown that, whereas Tc goes to zero at the SIT, the STM
gap !dos remains finite, in agreement with Fig. 1. Furthermore, the
gap in the LDOS shows marked inhomogeneity, which supports
our picture of emergent granularity (see Figs 4 and 5). After our
paper was written, we became aware of new experiments that
corroborate our predictions. STM experiments on InOx (ref. 31),
TiN (ref. 32), and NbN films33 have all found a pseudogap
persisting up to many times Tc. In particular, they observe a
marked suppression of the low-energy DOS together with a
destruction of coherence peaks above Tc, in complete agreement
with our predictions.

We hope that future STM experiments will study in detail
the anticorrelation that we predict between the height of the
coherence peaks (associated with large pairing amplitude) and the
small energy gaps in the local DOS. The obvious quantum critical
scaling between Tc and ⇢s(0) at the SIT, well studied in rather
different systems34, also remains to be tested experimentally in
s-wave superconducting films.

Conclusion
In conclusion, we have obtained detailed insights and predictions
for observable properties of the highly disordered superconducting
and insulating states in 2D films, and of the transition between
these states. Although we focused on s-wave SC films, it has
not escaped our attention that aspects of our results bear a
striking resemblance to the completely different—and much less
understood—problem of the pseudogap in the d-wave high-Tc
superconductors. Features such as the loss of low-energy spectral
weight persisting across thermal or quantum phase transitions,
even as coherence peaks are destroyed, may well be common to
all systems where the small superfluid stiffness drives the loss of
phase coherence. The pseudogap in underdoped cuprates is driven
by the proximity to the Mott insulator and further complicated
by competing order parameters, with disorder probably playing a
secondary role, unlike the disorder-induced pseudogap near the SIT
discussed in this paper.
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