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Madrid, 15 de julio de 2013

Estimado lector:

En estas paginas encontrard una recopilacion de los articulos de D. Nicolas
Cabrera.

La ocasién del centenario de su nacimiento en 1913 nos ha parecido adecuada
para re-editar este grupo de articulos, compilado hace casi dos décadas por
el entonces equipo directivo del Instituto Nicolds Cabrera.

La mayoria de los actuales miembros del Instituto no tuvimos la suerte de
conocer al Profesor Cabrera. Gracias a su trabajo y al de sus colaboradores,
hemos tenido la ocasidon de contagiarnos de la pasion por la Fisica que le ca-
racterizaba, y de beneficiarnos de su tarea como organizador. Los éxitos de la
Fisica en la Autonoma son el fruto del trabajo inteligente de los que crearon
estructuras técnicas y administrativas que facilitan el trabajo del investiga-
dor. Nuestro reto es modernizar estas estructuras, impulsando la excelencia
y el conocimiento. Volver a leer los trabajos del Profesor Cabrera y transmi-
tirlos a nuestros estudiantes es sin duda una buena forma de comenzar. Y
no somos los Unicos, algunos de los trabajos que recogemos aqui han sido
citados mds de 500 veces entre 2009 y 2012, y siguen influyendo en temas
de la mayor importancia tecnolégica, como la oxidacion de superficies o el
crecimiento de cristales.

Le deseo una lectura agradable de estos articulos, y espero que le sean dtiles

en su trabajo como profesor e investigador.

Hermann Suderow
Director del Instituto de Ciencia de Materiales Nicolds Cabrera
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METALLOGRAPHIE. — Sur l'oxydation de I'aluminium. tee
Note de M. Nicoras Casnena, présentée par M. Albert Pérard.

1. Op sail qu’il se forme sur.l'aluminium une couche d'oxyde (A12O*) dont
I'épaissenr croit d'abord trés rapidement, ensuile lentement, pour arriver apreés
trois mois & ~7"* avee une vitesse de croissance de o"*, 2 i 0™, 3 par mois.
Mott (') a douné une théorie en admeltant que 'oxydation est commandée par
le passage des électrons libres du métal & la bande de conductibilité de l'oxyde
(diﬁémnfm d'énergie @), suivi de leur diffusion jusqu’a la surface oxyde-air,
L’accroissement rapide du débul ést dit a ce que, pour des épaisseurs faibles, les
électrons peuvent traverser cetle barriére de potentiel direclement par effet tunnel
quantique. Dans le tableau ci-dessous (1) nous donnons, e fonction de @, les
épaisseurs @ caleulées, pour lesquelles dz/dt = 0,25 mp/mois ~ 10" mp/sec.

Epaisseurs calculées {en mjx) pour lesguelles dz/dt = 10~ mpfsec
{observées o~ 5 mpu).

1. Effet tunnel. II. Effet thermique. 1.
- — Eifer photoél.
@eV. T=3FK. T=400rK. T=5i00rK (0-*myonn sol.)
T T A *h,0 5. 5.10 107 5.p00
W v woves o3 4t o 3,4 o=t a0t 1a? 1o*
Bl e n ww ras oot 3,0 .17 10—t g S0
- T - 10— T 1ot 10

On voit que I'effet tunnel n’est pas suffisant pour rendre compte des épaisseurs
limites observées.
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2. A la tlempérature ambiante el au-dessus, et pour des valeurs faibles de @,
I'énergie thermique est suffisante pour faire passer les électrons du métal i la
bande de conduetibilit¢ de 'oxyde. La théorie de ce mécanisme conduil & une:
loi de la forme '

dx il .a{-zr:m.lf.'T}; *;—['T
(1) m = e——y = e e y

P o}

ol n est le nombre d'électrons par em® dans la bandé de conductibilité de
I'oxyde, en équilibre avee le métal 4 la température T, £ le volume d’oxyde
par électron libéré (~ 10727 cm*), et D la constante de diffusion des électrons
(=~ 0,25 em®[sec). D'aprés le tableau (11), ¢t pour obtenir i T~ 300 K. des
épaisseurs de ~ 7™, il suffit d’admettre que ®~v1 eV clesl ce qu'a suppose
Mott. Or, d’aprés ce méme tableau, et avec ®~vr1eV, il suffirait de monter
au-dessus de la température ambiante pour avoir des épaisscurs énormes
(50* & 400° K., 1*" 2 500°K.), qui ne correspondent pas i la réalité. En effet
nous avons étudié, dans des expériences préliminaires, la formation de la
couche d'oxyde & ces températures. Aprés g jours, les ¢paisseurs oblenues onl
été de ~u g, ~vizoel ~u20™ aux lempératures de 3oo?, 4oo® et 500° K. Nous
devons en conclure que la tempéralnre joue un role secondaire dans le
mécanisme de Poxydation, ce qui conduil & supposer ®= 2 ¢V.

3. Il y a un autre mécanisme possible, pour faire passer les électrons
A travers le saul de potentiel @, c'est I'effel photoélectrique des radiations de
fréquence supérieur i df4. Nous allons voir que Ueffet photoélectrique théorique
de la radiation ambiante est suffisant pour obtenir I'ordre de grandeur des
couches observées. La formule (1) est loujours valable, n (plutdt ;) élant
maintenant le nombre d'électrons par em? en équilibre avec le métal illuminé
par un.rayonnement permanent de longueur d’onde . La théorie de I'effet

N cm'?u-n

photoélectrique permet de calculer au moins 'ordre de grandeur du nombre P
d’¢lectrons émis par unité d'énergie incidente; m est donné par la formule
m = 4P|E, ¢ étant la vitesse moyenne d'émission des électrons, que nous avons

—8—
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SEANCE DU 15 JANVIER 1045. 113

pris Eo,BJz{ﬁv—lﬂ}M. La figure donne ny en électrons par em?, el erg
d’énergie incidente par cm?® ¢l sec, en fonction de A et -pour diverses valeurs
de 9.

Nous avons admis daps le caleul, pour la largeur de la bande de condue-
tibilité de I'aluminium, la valeur 16 eV, tirée des expériences sur I'émission de
rayons X. Sur la méme figure nous avons reporté la distribution spectrale du
rayonnement moyen exislant dans un laboratoire, en erg/em? sec, admetlant. .
pour sa valeur absolue 107, celle du rayonnemenl solaire au-dessus de

I'atmosphére. Par une intégration graphique, on obticent alors les n = f L, n, d

cdrrespondant i chaque valeur de @, d'oi les épaisseurs pour lesquelles
dz|dt ~ 1077 myfsec, qui sont écrites dans le tableau (1IT). On oblient ainsi,
pour @~ 2,5 eV, l'ordre de grandeur des épaisseurs observées. Nous sommes
d’ailleurs en présence d'une nouvelle méthode d’oxydation, que nous appellerons
photoélectrigue el qui permeéttrait d’obtenir facilement des couches assez épaisses.
D’aprés la figure el admetlant & = 2,5, le rayonnement le plus efficace serait
le proche ultraviolet. Avec XA~u3oo™ et une énergic de 10 ergfem? sce
(lampe & Hg ordinaire a 30) on obtiendrait, au bout de 10 jours, une conche
d’oxyde de 50", qui correspond & 307 de Al, c’est-a-dire une couche presque
opaque.
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THEORY OF THE OXIDATION OF METALS

By N. CABRERA anp N. F. MOTT
H. H. Wills Physical Laboratory, University of Bristol
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§1. INTRODUCTION

ECENT theoretical and experimental work on the oxidation of metals has
Rprovided a general theoretical frame into which it may be possible to fit
the complicated phenomena observed. While this scheme is by no means
complete or proved at all points, it seems worth while to publish it in its present
stage, in the hope that it may act as a guide to future experimental work,

In this Report the phenomena observed will be classified as follows :

1.1. Formation of stable films at low temperatures. Recent experimental work
indicates that many metals, perhaps all which oxidize readily, show very similar
behaviour when exposed to oxygen at a sufficiently low temperature. Oxidation
is initially extremely rapid, but after a few minutes or hours drops to very low or
negligible values, a stable film being formed 20-100a. thick. Aluminium
behaves like this at room temperature; copper, iron, barium and other metals
do the same at the temperature of liquid air. An explanation of this behaviour
was first given by Mott (1947 a), and depends on the hypothesis that a strong
field is set up in the oxide film, due to a contact potential difference between metal
and adsorbed oxygen, which enables the metal ions to move through it without
much help from temperature; the theory gives a logarithmic growth law of the
type

1/X =4 - Blnt,
X being the thickness at a time f. This mechanism is discussed in §4 of this
Report.

In many cases there is strong evidence that these films have a pseudomorphic
form, are thusnotinthermodynamic equilibrium, and arein fact highly compressed.
The theoretical basis for understanding this phenomenon has been given by
Frank and van der Merwe (1949 a,b) and van der Merwe (1949). According to
these authors, the question whether the film will be pseudomorphic depends on
" the degree of fit or misfit between the lattice in the face of the metal crystal exposed
and the spacing of the metal atoms in the oxide, They consider that a monolayer

11-2
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104 N. Cabrera and N. F. Mott

of oxygen atoms will be formed very rapidly (say in 10~* sec. at a pressure of
10-* mm. Hg); for purposes of calculation they then discuss a metal covered by
a monolayer of oxide. They then ask whether or not this monolayer of oxide
will take up the lattice parameter of the metal underneath. The answer depends,
of course, on the assumptions made about the forces between the oxide layer and
the metallic substrate, and also on the elastic constants of the oxide layer itself;
the more compressible the oxide, the more likely it will be to take up the
distorted form. Making reasonable assumptions, Frank and van der Merwe find
that, if the degree of misfit is less than about 159, the film will, in its state of
lowest energy, take up the lattice parameter of the substrate; if it is greater than
159, it takes up very nearly its own unstrained lattice parameter,

In the latter case an oxide layer will be formed which, while it may have one
crystal plane parallel to the surface layer of the crystal, will not have its crystal
parameter distorted. - In the former case, however, once a monomolecular layer
of oxide is formed all over the surface, it must continue to grow with the same
lattice parameter, even though, as soon as the layer thickens, the equilibrium
hecomes unstable. Provided that the surface is completely covered, the film
can only assume its unstrained lattice parameter either by breaking away from
the surface through plastic deformation or by recrystallization.

1.2. Region of intermediate temperatures. The discussion of the previous
paragraph shows that a stable film will grow until it reaches a limiting thickness
and will then stop, if the temperature is low enough for the following conditions
to be satisfied: (&) metal ions cannot cross the film without the aid of a strong
electric field, which only exists in #4n films; () in the case of films compressed
to fit the metal substrate the temperature at which crystallization occurs is not
reached. _

Recrystallization is a phenomenon which depends on the formation of one or
more nuclei, and is thus a process likely to involve a long induction period.
Figure 1, which gives results obtained at Bristol by Mrs. Garforth (1949) on the
growth rate of oxide on an evaporated copper film determined with a quartz
microbalance, shows a phenomenon probably to be explained by the recrystal-
lization of a pseudomorphic film. It would appear from the curve that the
recrystallized oxide can pass metal ions without the help of a strong field, so the
curve will eventually go over into one of the forms described in paragraph 1.3
below; if the recrystallized material were still opaque, one would expect the
logarithmic growth law of the type first described by Evans (1946) for films a
few 100 A. thick (not to be confused with the mechanism described under 1.1 above).

For metals for which the original oxide film is not fitted to the metal substrate
(aluminium), and perhaps for recrystallized films too, another intermediate region
can be recognized, that in which the temperature is high enough for ions to diffuse
without the help of a strong field, but in which the thickness is not great enough,
in the times used in the experiment, for the parabolic law (X? = 24t) to be valid
(see 1.3 below). In this region it is possible to find theoretical justifications for
various laws, a parabolic law with a different constant A, a cubic law X? = 34¢
(cf. the work of Campbell and Thomas (1947) on copper), a roughly linear law
X = At (cf. Gulbransen and Wysong (1947) for Al), A brief discussion of these
laws will be given in §3.

1.3. Parabolic law. For sufficiently high temperatures, and sufficiently thick
films, the oxidation should conform to the parabolic law, 'The derivation of this

—12 —



Theory of the Oxidation of Metals 165

law (X? = 24t) depends on the following assumptions. Either metal or oxygen
is soluble in the oxide; local thermodynamic equilibrium exists at the metal-
oxide interface and at the oxide—air interface; the concentrations of metal (or
oxygen) at the two faces are therefore different; metal or oxygen thus diffuses
through the oxide layer under a concentration gradient which is proportional
to 1/X; the rate of growth dX/dt is thus proportional to 1/X, and integration
gives the parabolic law.

Oxides such as those of zinc and aluminium do not dissolve oxygen; they can,
however, dissolve metal (thereby becoming excess semiconductors). For such
oxides, then, one can assume a vanishing concentration of metal at the oxygen-air
interface even for low pressures of oxygen ; the rate of oxidation is thus independent
of oxygen pressure. Oxides such as those of copper and iron dissolve oxygen

200 B
140°c, 120°C
=
a
2
Xx 100 [
©
sy
‘.—
L
05 50
Time (min)

Figure 1. Rate of growth of oxide layer on evaporated copper film at 120° ¢. and 140”7 ., at a
pressure of oxygen of 1-3 mm. Hg. The weights of oxygen taken up were determined by the
microbalance, and converted to thicknesses using the known density of the oxide.

(thus becoming defect semiconductors); the concentration gradient of oxygen
thus varies with oxygen pressure, as does also the rate of oxidation, Nevertheless,
it is not the oxygen which diffuses, but the metal, as has been proved by the use
of radioactive tracers in the case of copper (Bardeen, Brattain and Shockley 1946).
This is because the oxygen is taken up in such a way as to form vacant cation sites,
which diffuse away from the oxide-air interface.

In trying to estimate the value of the constant 4, one must remember that the
dissolved metal atoms are almost completely dissociated, e.g. into interstitial ions
and electrons. 'The value of 4 will depend on whether the pure (stoichiometric)
oxide is an insulator at the temperature considered. If this is the case, we shall

show in the next section that
A=2QDn, ... (1)

where Q is the volume of oxide per metal ion, D; the diffusion coefficient for an
interstitial ion and # the concentration of dissolved atoms (ions and electrons) at
the interface.

The derivation of this formula is valid only if the film is so thick that the
concentrations of ions and electrons are equal throughout most of its thickness.

— 13—



166 N. Cabrera and N. F. Mott

Actually at each boundary there will be layers where they are unequal, and where,
in consequence, a space charge is set up, giving rise to a double layer.. The
thickness of this layer is of order X, =+/(xkT/8nne?), where « is the dielectric
constant. 'This constant is of course very sensitive to temperature. As will be
shown in §3, in practice, in experiments lasting a few hours, if the thickness X has
grown to 10~*cm., then X » X, and the condition for the parabolic law is satisfied.

For films of thickness less than X, the space charge set up in the material,
if the concentrations of ions and electrons are unequal, has very little effect.
Onecan thus discuss the motion of ions and electrons separately. 'The much more
mobile electrons will probably pass freely through the film and set up a constant
potential difference V" between the metal and the adsorbed oxygen layer. The
field in the oxide film is thus V/X. 1If, then, n, is the concentration of metal fons
in solution and w; their mobility, the current is n;V//X ions/cm?sec., and it is
easily seen that a parabolic law follows with

A=QvVn. L 2)
This value of the constant 4 is quite different from that given by (1), and for
thicknesses of the order X, and thus in the transition regions between the two
laws nothing in the nature of a parabolic law is to be expected.
Case 1.1 above arises when #; is vanishingly small; this is discussed in §4.

§2. THE PARABOLIC LAW FOR THICK FILMS

2.1. The mechanism by which oxides (and sulphides and halides) can take
up excess metal or excess oxygen is now well understood. Excess metal can be
taken either interstitially, when the metallic ion goes into an interstitial position
and the electron moves round it through the lattice in an ““orbit” probably
extending over many lattice parameters, or as an F-centre (site from which the
anion is missing and is replaced by an electron). Excess oxygen is taken up
through the formation of vacant cation sites, a positive hole (missing electron)
being located on an adjacent ion.

An oxide containing excess metal (or oxygen) quenched to a temperature at
which the interstitial ions or vacant sites are not mobile behaves of course as an
electronic semiconductor®; at Jow temperatures the electrons are bound to their
interstitial ions, but as the temperature is raised an increasing proportion becomes
free. When, however, an oxide is in thermodynamic equilibrium with its metal,
at a temperature at which the interstitial ions are mobile, the dissolved atoms will
nearly all be dissociated into interstitial ions and electrons. It will be assumed
throughout this Report that dissociation is complete.

2.2. We have then to discuss the contact between a metal and an oxide capable
of accepting excess metal, and to determine the concentration #; of interstitial ions
and 7, of electrons in the oxide at a distance x from the interface, when the whole
system is in thermodynamical equilibrium. If « is large enough, »; and =,
become equal, but this is not so for small x, so that a space charge is set up at the
boundary. At the boundary we envisage a situation such as that shown in
Figure 2; the process of solution of an ion in the oxide is typically the removal
of the ion at P from its position in the surface layer of the metal into an interstitial
position of the oxide. If the energy required to do this is denoted by I}, then
W, may be described as the heat of solution of a metallic ion.

* For a recent eview of the theory of semiconductors see Mott (1949 a).
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Theory of the Oxidation of Metals 167

We may also introduce the energy ¢ required to remove an electron from the
metal into the conduction band of the oxide; for oxide grown chemically on the
metal we may expect this to have a characteristic value, adsorbed gas layers being
absent from the interface.

The usual diagram for an insulator in contact with a metal is shown in Figure 3;
¢ will in general be less than the work function of the metal against vacuum.

The quantity ¢ + W, — e is the heat of solution of the metal atom in the oxide;
here ¢ is the energy with which an electron is bound to the interstitial ion in the
oxide. Thus, while ¢ and W, may individually depend on which crystal face of
the metal is exposed, ¢ + WW; will not.

METAL
< ADSORBED

OXYGEN
OXIDE _
} Conduction

O
O
O
®)

Band

00000000

00000000000
0]0/0 0 0]0(0[0)6]6l6]0)
QOOOQOO0 0000

__///////////////Bzun'g

Metal Oxide

Q000

8853
O

Figure 3. Metal in contact with insulating
oxide.

Q
8

Figure 2. Showing the mechanism by
which ions leave a metal and pass
through oxide layer (Mott 1947 a).

It is easily shown that, if ¢ is less than both ¢ and ¥/, by at least several multiples
of RT, the dissociation is almost complete; this will be assumed in what follows.
Immediately at the interface the concentration #;(0) of interstitial ions is
given by
m(0)=Nyexp(—-W/kT), ..., 3)

where NV, is the number of interstitial positions per unit volume in the oxide.
Similarly the number #,(0) of electrons is

n,(0) = N exp ( -¢/RT), (4)

where N, =2(2emET/h?)*2.  Also if n(x), n(x) are the numbers at any distance
x from the interface, the product »(x)n(x) must be constant; thus at large
distances #,(x) and n,(x) are equal, say, to n, where

n=v(NN)esp{- KW+ &R ... )
At intermediate distanées these quantities can be deduced from Boltzmann’s law:
n(x)=nexp(—eV/RT);
n(x)=nexp (eV/RT),
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168 N. Cabrera and N. F. Mott

where V' is the electrostatic potential, and from Poisson’s equation
d*V  4mwe ‘
= = T (%) = (w) .
It is assumed here that ions carry unit charge.
Substituting for #n;, #n,, this gives

a2 ™ .

%Zzg—,femnh(%). .......(6)
An exact solution satisfying the boundary conditions (3), (4) can easily be obtained
(cf. Mott 1947 b), but is not necessary for our purpose. We need only examine
the form of equation (6) when x is large and 7 consequently small; it then
becomes d*V/dx?= VX%, where

Xo=+/{xRT87ne?. .. (7

The solution is V'=const. exp(—x/X,). This shows that our treatment of the
problem will differ according as the thickness X of our growing film is or is not
greater than X,. If X'> X, we may, throughout the bulk of the film, treat n,, #,
as equal; this assumption will be made throughout the rest of this section. The
other extreme case, X <X, will be treated in §4.

Other interesting examples of double layers in the vicinity of the metal-oxide
interface can be given. If the solubility of oxygen in the metal is high and the
energy required to take an oxygen ion from the oxide and to put it into the metal is
not too big, vacant anion sites will be produced near the metal-oxide interface, with
the corresponding electrons in the conduction band of the oxide. These vacant
anion sites will diffuse through the oxide during the oxidation processes. 'This is
probably the mechanism by which Ag and also Cu absorb oxygen at high
temperatures without the growth of a thick layer of oxide, as long as the saturation
concentration of dissolved oxygen in the metal has not been reached.

2.3, The case of an oxide in equilibrium with the oxygen gas, and the formation
of a double layer near the oxide—air interface, can be treated in a similar way.
Let us considerthe case of an oxide (Cu,0) absorbing oxygen through the formation
of vacant cation sites (concentration #;) and positive holes (concentration 7,) in
the full band of the oxide. Far from the oxide~air interface both concentrations
are equal to #, given by (see Mott and Gurney 1948, p. 260)

128
n=/(NN,) (%) exp(—E2skT), ... (8)

where NV, and N, are as in §2.2, and
N, =(27MRT|h?)3%;

M is the mass of an oxygen molecule, 7, the number of oxygen molecules per cm?
in the air and E the energy required for the absorption of one of them and the
formation of s vacant cation sites and s positive holes (s =4 in the case of Cu,0).
The concentration # will therefore be proportional to p*, where p is the pressure.

The calculation of the concentrations #{(0) and 7,(0) near the oxide-air
interface requires more careful consideration. Figure 4 represents the electronic
levels of the oxide and those of the adsorbed oxygen layer (we assume for simplicity
that the levels of the adsorbed layer correspond to the same energy). As we shall
see in §4, the adsorbed levels may be below the top of the full band (¥ might be
negative), particularly in the case of Cu,0.

— 16 —



Theory of the Oxidation of Metals 169

Let Ny and N be the number of empty and full levels in the adsorbed layer
per em®  ‘T'hen it is easy to see that 7,(0) is given by

n(0) = N(No/N) exp (— /R T),

where the factor Ny/N is due to the different ways in which the N occupied levels
can be distributed among the total number N, + N of levels. On the other hand,
the vacant cation sites will be produced only in the neighbourhood of the NV
adsorbed oxygen ions, requiring an energy ¥}, according to Figure 5. Therefore
7;,(0) will be given by #,(0) = N(Na* exp (—~ W;/kRT), where Na? represents the
proportion of the oxide-air interface occupied by oxygen ions.

The presence of the factor (a®NV) in the formula above can be seen by an
application of the principle of detailed balancing. The number of vacant cation
sites created per second will be proportional to (a2N); the adsorbed oxygen ion
is then neutralized and another one is produced somewhere else in order to keep
N constant, On the other hand the number of vacant cation sites disappearing
per second will be proportional to #,(0)/NV; and independent of (a2N), because this
process does not require the vicinity of an adsorbed oxygen ion.

Oxide

}Conduction - + - +
Band
b
—+ %0
W | { Adsorbed \

Ml +—+ =7
-+ =+

Figure 4. Insulating oxide in contact
with oxygen.

Oxygen

Figure 5. Showing the process by which a vacant
cation site is created in the vicinity of an
adsorbed oxygen ion.

As n,(0)n(0) =n2, we deduce that the proportion of the oxide-air interface
covered with adsorbed neutral oxygen is

Nya? = (%)1’8 exp{— <§ - — Wi> /kT},
g

obviously a function of pressure. On the other hand the number NV of adsoibed
oxygen ions will be equal to the total space charge near the oxide-air interface,
and, therefore, also a function of pressure.

Throughout this discussion it has been assumed that the oxide of stoichio-
metric composition is an insulator i.e. it has no intrinsic electronic or ionic
conductivity, or these conductivities are small compared with that due to the
dissolved atoms.

2.4. Calculation of rate of growth of oxide film. In the oxide film, we denote
by D,, v, the diffusion coefficient and mobility of an electron and D;, v; the same
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170 N. Cabrera and N. F. Mott

quantities for an interstitial ion. Then if F is the field in the film, the current
i, carried by electrons is (in units of e)

. on
Je= e'a';e +Fnu7)e7
and the current j; carried by the ions
. 3ni ,
1]-:" _DIBT‘; - f’niﬂj.

In a steady state these are equal and opposite; thus, putting both equal to j

(number of atoms crossing unit area per unit time), we see on eliminating £’
between the two equations,

Sl 1] _ kI3 o
]{ncv i nl'?l}_ e g,;]n (mm). %)

In deriving this equation use has been made of the Einstein equation D/v =kT/e.

We may certainly assume that z,>v;. In the case of an oxide which is an
insulator in the absence of dissolved metal or oxygen, and for which X> X, we
may further assume that m(x) =#n,(x) =n(x), say, throughout the film, except for
the boundary zone, which we neglect. The equation (9) thus becomes

j=-20,2,
or, on integrating throughout a film of thickness X,
JX =2D,[n(0) —n(X)].
The rate of growth is thus dX/d¢t = 4/ X, whence X*=2A4t, where
A =2DQ[n(0) ~n(X)].

"The parabolic law is thus satisfied. The quantity in the square brackets is
the difference between the concentrations of dissolved atoms at the surface metal-
oxide and at the surface oxide-oxygen.

A further case in which equation (9) can be solved is that in which oxide
(or halide) is a good ionic conductor in the pure state, and the electronic con-
ductivity, due to the addition of metal, is small in comparison.  This may be
the case for the halides. We may then set 7,9, <n; and take n; as constant
throughout the film. The equation then becomes

BT o,
e ox’

7)6
so the parabolic law is satisfied with
A =D Q[n,(0) —n,(X)].

Returning to (10), the usual assumption is that, for oxides which form excess
semiconductors (ZnO, Al,O,), the concentration 7,(X) of dissolved metal at the
oxide-air interface is zero (except for very small pressures of oxygen), so that the
oxidation constant becomes

A=2DQn0), . (11)
Note that here D; is the diffusion coefficient of the interstitial ions and 7(0) the
concentration of metal atoms (dissociated or otherwise) in the oxide in equilibrium
with metal. For oxides such as Cu,O on the other hand we assume that #(0),
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the concentration of vacant sites in equilibrium with the metal, is small compared
with that, #(X), in equilibrium with the air; thus, approximately,
A=2DOnX), .. (12)

where 7(X) is the concentration of vacant cation sites in the oxide in equilibrium
with oxygen, and D; the diffusion coefficient for one of these sites. Note that in
the former case the oxidation rate is almost independent of oxygen pressure p,
unless this is very low; in the latter case, according to (8), it should vary as pt.

2.5. Experimental vesults at high temperatures. Putting in formulae (11) or
(12) the usual expression D;~a?vexp(— U/RT) for the diffusion coeflicient of
defects in the oxide, @ being the interatomic distance, »(~10'2sec™) the atomic
frequency of vibration and U the activation energy for movement between two
equilibrium positions of the defect, and using formulae (5) or (8) for n, we get,
for the constant 4 in the parabolic law, an expression of the form

A=Ajexp(-B/RT), ... (13)
where
Ay=2a%vQ+/(N,N,), B=§W;+¢)+Uor E/2s+ U.

The factor (n,/N,)"/* appearing in (8) is of the order unity and can be disregarded.
Taking a~3x 108 cm., v~10%sec?, Q~a3 N;~102cm3, N,~108cm3,
we obtain 4y~ 10-% cm?/sec. In this evaluation we have disregarded the change of
vibrational frequencies of the solid due to the presence of defects and the change
of the activation energy B with temperature. This may, however, introduce a
factor which can be of the order of a few powers of 10 (see Mott and Gurney
1948, p. 29), and which seems to be larger for the vacancy type of defect than for
interstitial ions.

Table 1 gives the constants 4, (in cm?/sec.) and B (in ev.), determined
experimentally during the oxidation of several metals in the range of temperature
indicated. In some of these cases the oxide layer is complex.

Table 1. Values for the Constants 4, and B in Formula (13)
and governing Rate of Oxidation

Temperature range A, (cm?fsec.) B (ev.)

Fe 700° to  900° c. 1-0 16
Cu 700° to 1000° c. 0-2 15
Ni 800° to 1000° c. 0-1 2

Pb 470° to 626° c. 02 14
Zn 600° to  700° c. 0:002 15

For Fe there are three layers (FeO, Fe 0,, Fe,O,, going from metal to air)-
The values given in Table 1 correspond to the thickness of FeO (Bénard and
Coquelle 1946), which in the range of temperatures considered forms 909, of
the total thickness. It is believed that the diffusing elements are mostly vacant
cation sites formed at the FeO-Fe O, interface. For Cu, at pressures below
100 mm. Hg at 1,000°c., there is only Cu,O and no CuO. Assuming that the
diffusing elements are also vacant cation sites produced at the Cu,O-air interface,
one expects from formula (8) that 4, should be proportional to p¥; this was
proved to be the case by Wagner and Grinewald (1938). The values given in
Table 1 are extrapolated to p=1 atm. For Ni, vacant cation sites are also
responsible for the diffusion of the metal, and, therefore, 4, is also a function of
the pressure, as was proved by Wagner and Griinewald. The values quoted in
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Table 1 are deduced from data given by Evans (1948, p. 144). 'T'he values for
Pb and Zn were observed by Krupkowski and Balicki* (1937), who studied the
formation of solid oxide layers on the surface of liquid metals. It is well known
that the diffusing elements in ZnO are interstitial ions formed at the metal-oxide
interface; therefore one expects the constant 4, to be independent of the pressure,
as was shown by Wagner and Griinewald (1938).

Bénard and Talbot (1948) have studied also the oxidation of single crystals of
copper at 900°c. Figure 6 represents the increase of weight as a function of time
on different faces of a copper crystal. These differences were also reported
earlier by Gwathmey and Benton (1940) on copper at 1,000°c. It is known from
the work of Wagner and Griinewald (1938) that in the case of copper the con-

15 P~

210 221
211 110
11
100

— 123

g

S 10

=3

E

)

<=

0.0

kY

=

=

=¥

2 5k

fad

(&}

£

0 L i 1 i
0 i 2 3 . 4

Time (hours)
Figure 6. Oxidation of different faces of copper at 900° c. (Bénard and Talbot 1948).

centration of vacant cation sites in the oxide near the metal-oxide interface #(0)
is not quite negligible in comparison with their concentration near the oxide-air
interface n(X). Therefore formula (10) has to be used. On the other hand, the
diffusion coefliciznt D; cannot be a function of direction in a cubic crystal such
as Cu,O; therefore, Bénard and Talbot’s results show that n(0) or n(X), or
perhaps both, are not equal to the equilibrium concentrations, which of course
would not depend on the crystal surfaces exposed. As the differences depend
on the orientation of copper surface we expect that #(0) will not be equal to the
equilibrium concentration, but will be higher for the faces for which the rate of
oxidation is lower.

One of us (Cabrera 1949b) has advanced the following hypothesis to explain
this. As long as there are enough positions such as P (Figure 2) on the metal

* These authors observed also the oxidation of liquid Cu (1,100° to 1,200° ¢.) and Ag (1,000° to
1,035° ¢.), for which they obtained an initial linear increase of weight without the formation of a
thick oxide Jayer, due to the absorption of oxygen in the liquid metal.
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surface, the concentration of vacant cation sites near the metal will be maintained
equal to the equilibrium concentration, in spite of the constant arrival of new
vacant cation sites; but when the evaporation into the oxide of a new atomic
layer of the metal has to be started, a larger activation energy will be required for
the formation of a “ hole” on the metal surface, such as is illustrated in Figure 7,
and, therefore, the concentration of vacant cation sites in the oxide will grow.
This point of view assumes that the metal surface has a practically perfect
structure, and one can deduce that the order of increasing rate of oxidation should
be the same as the order of decreasing density of metal atoms on the surface:
that is to say (111), (100), (110), (311), (331), which is not in agreement with the
experimental results represented in Figure 6. Actually the metal surface is not
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Figure 7. First step in the
evaporation of a new layer 201
of metal into the oxide.
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Figure 8. Growth curves for Cu,O on Cu determined bv
Miley and Evans by an electrometric method.

even microscopically perfect; according to anideaput forward by Frank and others
(Burton, Cabrera and Frank 1949, Frank 1949) a certain type of *“ dislocation”’
in the body of the metal produces positions such as P (Figure 2) on the metal
surface, which are not destroyed when the entire atomic layer is evaporated;
therefore the rate of oxidation on different crystal surfaces will depend on the
concentration of these dislocations per unit area of each crystal surface. Just how
this will depend on the crystal face is not at present clear.

§3. THEORY OF FORMATION OF THIN FILMS
In this section we outline the theory of the rate of growth of thin films. By
thin we mean of thickness X small compared with X, defined by (7), so that the
concentrations of positive ions and electrons diffusing across the layer can become
unequal without any important space charge being set up. In practice most of
the films that we shall discuss are of thickness 100 a, or less,
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No attempt will be made here to survey all the available experimental material.
A survey of all but the most recent material is given in the book by Evans (1948);
Figure 8 shows results, taken from p. 65 of this book, on the oxidation of copper,
measured by an electrometric method. As an example of more recent work
Figure 9 represents the rate of oxidation of thin films of aluminium at 10°c.
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Figure 9. Rate of oxidation of aluminium (Cabrera et al. 1947) (a) in the dark, (b) under ultra-
violet illumination.
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Figure 10. Oxidation at room temperature and pressures of oxygen between 10-4 and
102 mm. Hg (Garforth 1949).

These results were obtained by Cabrera, Terrien and Hamon (1947) from the
increase in the transparency of the film during oxidation, a method first used by
Steinheil (1934). The upper part of the curve represents the influence on
oxidation of ultra-violet light, which will be discussed later. ~Figure 10 shows
the oxidation of copper, aluminium and silver at room temperature and oxygen
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pressure of 107* to 10-2 mm. Hg measured recently in this laboratory by
Mrs. Garforth (1949) using a quartz microbalance.

The general result of all this work s that all metalsinvestigated show in principle
a similar behaviour. If the temperature is low enough, they show, when exposed
to oxygen, an initial very rapid growth, followed by a remarkable slowing down,
and for some critical thickness Xy, of order 100 a. or less growth stops or nearly
stops. 'This behaviour is rather insensitive to the pressure of oxygen.

In this section and the next, then, we shall discuss the mechanism by which
these very thin films of oxide grow. Consideration of the mechanism by which
the first monolayer is formed is deferred until §5, as is also the related question
of whether or not the film is pseudomorphic (strained). Here we suppose that
a thin layer of oxide exists in the metal and is growing; we require to know how
fast it grows. As in §2, the oxide is supposed to be an insulator when of
stoichiometric composition but to be capable of dissolving metal ions; in contra-
distinction to the case considered in §2, it is here supposed that the film is so thin
that the effect of any space charge set up by the dissolved ions is negligible, so that
the movements of ions and of electrons can be considered independently. In
other words, the film is thin compared with the quantity X, defined by (7).

It will be worth while to consider again the condition that this should be the
case. Suppose that ; is the number of interstitial ions per unit volume in the
oxide when in equilibrium with metal, and let ¢ be the charge on each ion. 'Then
Poisson’s equation gives for the potential energy ¥ of an ion in the oxide layer
A2V (dx?=4mng?/k. On integrating we see that the contribution to the potential
due to the space charge alone is V =2amg?x%/k, where x is measured from
the mid-point of the film., Thus for a film of thickness X the maximum
variation of V is 3m#n,g?X2%/k. This is negligible if small compared with RT.
Thus, omitting numerical factors, the condition that the field is negligible is
X <+/(kkRT[ng*). This is the same as the relation (7) already obtained.

We consider then a film of oxide on the metal exposed to oxygen. A layer of
oxygen will be adsorbed to the surface of the oxide; this oxygen will be assumed
to be atomic. We assume further that electrons can pass through the oxide
layer from the metal to the oxygen by some mechanism (thermionic emission or
tunnel effect), and that the electronic motion is rapid compared with the ionic
motion. Some of the adsorbed oxygen atoms will then be converted into ions
O, setting up a field across the oxide layer, until a state of quasi-eqilibrium is
set up between the metal and the adsorbed oxygen, in which, in a time short
compared with that in which the metal ions diffuse, as many electrons pass in
one direction as the other. The electrostatic potential I set up across the layer
will clearly be independent of the thickness, so thatthe field Fis given by F=T7/X.

The electronic levels in the metal, the oxide and in the adsorbed oxygen layer
are shown in Figure 11. Figure 11(a) shows the state of affairs before any
electrons have passed through the film; in the oxygen atoms there are energy
levels below the surface of the Fermi distribution in the metal*; the quantity el
already introduced is the amount by which they are lowered. Electrons will
pass through the film until the quasi-steady state in Figure 11() is reached, when
as many electrons pass through the film in one direction as in the other. Since VV
in practice is of the order of one or two volts, its variation with temperature
can be ignored.

* These energy levels are probably the surface states described by Bardeen (1947) in his work on
rectifiers, cf. Mott (1949 b). '
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A very rough numerical estimate of V7 ean be given. 1f E is the electron
affinity of O and W), the adsorpticn energy of an oxygen ion O~ on the surface
of oxide, then eV =FE + W4 — b, where ¢, is the work function of the metal
against vacuum. We do not know very much about W, if one considers
the oxides as ionic solids, the calculations of Lennard-Jones and Dent (1928)
suggest that W, .~ 0-1€*2r, where 7 is the radius of the ion O~. This gives
Wyma~1lev. if r~1a. This value is probably too low by a factor 2 or 3,
because of the covalent forces existing in the oxides. Taking (Bates and Massey
1943) E=2-2ev. and ¢,=46ev. for copper, or 43ev. for aluminium, we get
values for V of the order of 1volt.

The growth of the film is due to the strong field set up in this way, which pulls
the interstitial metal ions through it. These fields may be very strong; thus for
a film 50 A. thick they may be of the order 107vjem.  For these fields the diffusion
velocity of a positive interstitial ion is no longer proportional to the field. The
condition that the diffusion velocity shall be proportional to the field F is
gaF < RT, where ¢ is the charge ‘on the ion, a the distance between interstitial

Oxide Oxygen

Oxide | Oxygen

Metal

Electron
Level

(@) ' ®)

Figure 11, Electronic levels in the metal, oxide and adsorbed oxygen : (@) before electrons have
passed through the oxide, (b) when equilibrium is set up.

positions. This will be the case for films of thickness X large compared with
X, where Xy =qaV/RT. Xjisoforder 50-200 atomic layers at room temperatures.

We, treat first the case when X'> X, (though less than X defined by (7)).
The number of ions crossing unit area per unit time is

n,’l)lF= nivi V/X,

where ©; is the mobility of an ion. The rate of growth is thus dX/dt=A4/X,

where
A=ny, VQ=nD,Q(eV/RT). ... (14)

The film thus grows according to the parabolic law. Actually Gulbransen and
Wysong (1947) have observed for aluminium a parabolic law between 350° and
450°c., which corresponds very probably to the case considered above. It is,
of course, always assumed that electrons can pass freely through film, by either
thermionic emission or tunnel effect. If ¢ (Figure 3) is too great for thermionic
emission and the film too thick for tunnel effect (c.30a., cf. Mott 1940), these
formulae may be expected to break down and the film to stop growing. Whether
this corresponds to any case observed in practice is not known.

It is to be emphasized that the constant 4 given by (14) is quite different from
that derived for X > X (formula (11)). It depends on #;,and thus on the expon-
ential factor exp (— Wi/RT)instead of on /(n,n) and thusonexp { — {(W; + ¢)/RT}.
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If, for instance, W, is larger than ¢, then in the transition region where
X~X, the value of 4 in the parabolic equation increases. It is likely that an
increase of this type may account for the apparent linear law observed by
Gulbransen and Wysong (1947) for aluminium in the region around 500°c.

It is easy to make a rough estimate of whether the thickness X of an oxide
film is greater or less than the thickness X, above which the densities of electrons
and positive ions can be taken as equal. Let us suppose a film to be growing
according to a parabolic law

IX2=avtexp {—(W+U)RT), ... (15)

where ¥ is the heat of solution of an atom or ion and U the activation energy for
motion. We want to know whether X2 is greater or less than X? where

Xi~(a*RT/e*) exp(W/RT),
and thus whether
exp(— W/RT)< a*kTje2 X2
Substituting for exp (— W/RT) from (15), the condition becomes
(X?2a%vt)” < a®RT €2 X?, y=Wji(W+U),

and thus « '

)_jz <€§2l1>12“_1)(,,t)-/‘2w+1x
y is probably about 2/3; the factor (kTa/e?)V2**V is then about 4, so that
XlaZ 4(vt)'5. )

For experiments lasting a few hours (¢#=10* sec.), and with v =102 sec™1, we
see that the critical thickness X is about 6 x 103, or about 2x 10~¢ cm. Ifin a
few hours the film has grown to this thickness the mechanism is that of §2; if
not, it is the mechanism of §3.

Up to this point the theory has been developed for metals whose oxides form
excess semiconductors, e.g. Zn, A. For these metals »; depends on the metal-
oxide equilibrium, and is, of course, independent of thickness. For the oxides
of copper, iron, and so on, which take up excess oxygen, the position is rather
different. #; will then refer to the number of places where a cation is missing.
These can be formed wherever an oxide ion is adsorbed to the surface by the
process shown in Figure 5; W, now represents the energy required to move the
positive ion from A to B. It is clear, then, since n;=(N/a)exp (— W,/RT), that
the concentration #; is proportional to the number N of such negative ions per

unit area. :
On the other hand N is related to the field F by the Coulomb formula

NoXE _xV 1
" 4ne 4me X’

showing that N is proportional to X~1; therefore #; in formula (14) is now
proportional to X~1. 'This leads to an oxidation law of the type

X3=34:«, L (16)

where the constant A is proportional to exp{—(W,+U)/RT}, W, being
the energy to form a vacant cation site and U the activation energy for its
PSPR 12
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diffusion in the oxide. Cabrera (19492a) has used this formula to explain the
cubic law observed by Campbell and Thomas (1947) on copper between 100°
and 250°c.  Their results can be expressed by a formula such as (16), where the
constant 4 is given by

A~10""exp (— B/RT)cm?/sec., B=W,+U~11ev.

As noticed before (§2), the differences in the rate of oxidation for different
crystal faces, for films of thickness X great compared with X, (c. 10~* cm.), can be
explained only on the basis of a surface nucleation process occurring at the metal-
oxide interface, because W, +¢, the heat of solution of metal, cannot depend on
the crystal face. When X <X, the same surface nucleation process will play a
role, but we expect also to have differences in the rate of oxidation due to the fact
that W, and ¢ (or V) may well depend oun the crystal face. Gwathmey and
Benton (1942) have observed differences in the rate of oxidation on a spherical
single crystal of copper at 200°c. The metallic crystal faces, ordered according
to a decreasing rate of oxidation, are (100}, (210), (111), (110), (311). The fact
that thisorderis different frem thatreported by Bénard and Talbot(1948)on copper
at 900°c. suggests that the rate-determining factor at low temperatures is the
difference in W,.

§4. FORMATION OF VERY THIN FILMS

For very thin films the field is so strong that the velocity of drift of the ions is
no longer proportional to it. In this case the motion can be treated as follows
(Mott 1947a). Suppose that an ion has to go over a potential barrier U in
order to move from one interstitial site to the next. In the absence of a field the
chance per unit time that an ion will do this is vexp (— U/RT) with v~ 1012sec™t..
The field will, however, lower the barrier by § gaF for motion in the direction of
the field, increasing the probability of movement to vexp {—(U—1¢aF)/RT}.
In the opposite direction the chance of movement is decreased by the same
factor. 'Thus the velocity u of drift becomes

u=vaexp{— U/RT){exp (3qaF/RT) - exp (—}qaF/RT)}.
For small values of F this reduces to
u~(vatq/RT)Fexp (- U/RT),
which is preportional to the field. For large values, on the other hand,
u~vaexp(— U/RT)exp (3gaF/RT),

giving an exponential dependence.

It will be seen that, when the field is strong, the motion of the ions is over-
whelmingly in cne direction; there is, therefore, no question of any local equili-
brium between metal and oxide, since equilibrium is only set up when there is
a continual exchange of ions. Thus every ion which escapes from the metal is
pulled right across the film, and none recombine with the metal. It fcllows that
the rate of oxidation, for these strong fields, is determined cnly by the rate at
which ions cscape from the metal. This we must now calculate,

The potential energy of an ion in the surface layer of the metal is plotted in
Figure 12. The diagram is intended to describe the state of affairs for an ion in
the position P of Figure 2, that is, an ion ready to move into the oxide as the
surface layer of metal dissolves. P represents the energy of the ion at rest at
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this point; Qy, Q, ...are interstitial positions in the oxide and S;, S, ...the tops
of the potential barriers separating these points. 'The heat of solution ¥ for a
positive ion and the activation energy for diffusion U are shown in the diagram.
It is convenient to set W=W,;+ U.

Then the chance per unit time that the atom will escape over the barrier to
'Q, is, in the absence of a field vexp(— W/RT). In the presence of the field it is

vexp(— W/RT)exp (qa' F/RT),

where @’ is the distance from P to the top of the barrier. The rate of growth of
ithe film is thus

dX , ‘ ga'F

= =N'Qvexp(— W/RT)exp <W>’ ...... (17)
where N’ is the number of ions per unitarea surface in sites such as P (Figure 2).
“"This may be contrasted with the similar formula for weak fields (cf. equation (14)),

g _ nlDquF

dt rRT

Potential Energy >

[Figure 12. Potential energy of an interstitial ion in the neighbourhood of the metal-oxide interface.

Since n,=a3exp (— W/RT), D;=va?exp (— U/RT), the two formulae could be
comprised in the general formula

ax . ., qa'F
v =avexp(—W/RT) Smh_k—f’ ...... (18)

‘but for the fact that V' may be much less than 1/a% A proper estimate of N’
has not been made, since it depends on the number of ¢ kinks”’ (Figure 2) present
-on the surface (Burton and Cabrera 1949); it is hoped to publish an estimate
soon (Cabrera 1949D).

Formula (17), for the growth rate in oxygen, can be used to describe two
different phenomena:

(a) The growth of films in oxygen, where F is V;X, I being the contact
potential difference between the metal and the adsorbed oxygen layer. This is
‘the phenomenon discussed hitherto.

(6) The anodic formation of oxide films in an electrolyte containing oxide

dons. 1V is then the voltage across the film.
In either case the equation may be written

dXjdt=uexp(Xy/X), ... (19)
where X,=qad' V/RT, u=ugexp(— W/RT), g =N"Qvr.
X, is of order 106 —10-% cm., uy~ 10%* cm/sec. (or less). 'The formula (19) s

valid only for X<« X;; it shows that the growth rate is very large for small X
I2-2
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A particular and important consequence of formula (19) is that for constant
V growth up to a certain limiting thickness occurs even at low temperatures where
 is negligibly small; this will be the case when the solubility of metal ions in the
oxide is negligible. 'This may be shown as follows. Suppose we say that growth
has virtually stopped when one layer of atoms is added in 10° seconds, so that
dX/dt=10"13. Thisoccursatathickness X forwhichexp (X /X,—W/RT)=10"1".
Substituting for X7, this gives, since 17In 10 =39,

X, =Vd'q/(W—-39RT). R (20)

Thus there exists a critical temperature 1#/39k; for temperatures below this
critical temperature the film grows rapidly up to some critical thickness and then
stops, while for higher temperatures there is no limiting thickness, the initial
rapid growth rate going over into the parabolic type of growth.

For X <X, an approximate integration of equation (19) can be given. Since

1* ,
t= z—tJo exp (—X;/x)dx,

an integration by parts and neglect of higher terms in X/X; gives
ut =(X%X,)exp (— X,/ X).
For X< X, we may thus set
Xy X=ln(Xu/X3$), ... (21)

giving a logarithmic type of growth law of the type X;/X=4—1In¢. X, has
values between 10-8 and 10-3 cm.

4.1. Numerical values for an oxide which forms an excess semiconductor
(aluminium). For aluminium it is possible to deduce the unknown parameters
W, @’ in the theory from experimental work on the formation of anodic films on
oxides. Following Verwey (1935) and Mott (1947 a), we make use of experi-
mental work by Gunterschultze and Betz (1934). These authors find that the
current J through an oxide film during anodic formation depends on the field F
through the formula

J=oe L (22)

where at room temperature 1/o=2-75 x 10 pajem?, or 0-92 Es.v. If F is in
volts, B=42x10-6. For small fields (8F~1) the current is negligible. The
formula is obviously to be compared with (17). We set

ga' |RT =B, W=RrTIn(N'gv/a).

Taking N'~10%cm™2,g=3e,v=102secland RT =0-025ev., wefind W =1-8ev.,
a=35%x10"8cm. These values seem reasonable.
Inserting these values into formula (20) for the limiting thickness, we find
for aluminium
X, =6x10-%V/(1 - T/530) cm.,

where V' is measured in volts. At room temperature this gives, in cm., 10-77,

At room temperature the thickness found by Cabrera and Hamon (1947)
is about 20 a. (Figure 9), giving V"'~2 volts. The same authors have been able
to verify roughly the temperature dependence of the limiting thickness X, given
by the theory. They find that the limiting thickness increases slowly with tem-
perature, while above 300°c. (573°k.) the growth is rapid and seems to continue
without limit. This agrees well with the predicted value.
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Cabrera, Terrien and Hamon (1947) have also found that an increase in the
thickness of the order 509, could be produced by ultra-violet illumination
(Figure 9). This has been explained by Cabrera (1949a) as due to the ejection
of electrons from the metal to the adsorbed oxygen, thereby increasing the field
in the layer. This is only possible when the thickness of oxide is bigger than
10A., otherwise the current of electrons going from the absorbed oxygen back
to the metal by tunnel effect will compensate the increase in the electrons going
in the reverse direction produced by photoelectric effect. This is the behaviour
actually observed (Figure 9).

4.2. Owides which absorb oxygen; the case of copper. In the case of Cu,O
forming on copper the difference of potential set up across the oxide film must be
0-7 volts. 'The energy levels of Cu,O are as shown in Figure 13. In the first
place the interval from the full band of Cu,O to the top of the Fermi distribution
in the metal is known to be 0-7 ev., this being the height of the Schottky barrier
in a Cu— Cu,O rectifier (Mott and Gurney 1948, p. 189). In the second place
the full band is believed to be due to the Cu* 3d shells, and will probably be
higher than the empty levels due to the adsorbed oxygen. Thus in equilibrium
charge will distribute itself as in Figure 13 (b).

Induced Positive Holes  Electrons
Charge
N_ - ...
= A _ 3
e O/ZP_V zW 0 Loves
c
Cu / / //////// Emply v Cu,0
Oxygen
Cu0 Levels
(@) &)

Figure 13, Electronic levels in Cu, Cu,O and oxygen: (a) before equilibrium is reached,
(b) afterwards.

The critical process which is so much accelerated by the field must now be
the formation of a vacant cation site at the oxide-air interface. Though the
mechanism must be very similar to that described for aluminium, the details
have not yet been worked out,

The fact that the thickness of oxide formed at room temperature (1304.) is
much bigger than that formed on aluminium, in spite of the fact that I is smaller,
could be explained by the fact that the critical temperature W 39k at which the
logarithmic law goes over into a cubic law is now just above room temperature,
if we take for W=W;+ U the value 1-1 ev. suggested by the measurements of
Campbell and Thomas. At liquid air temperature we should expect a thinner
layer on Cu than Al, but this does not seem to be the case according to new
measurements now in progress at this Laboratory by Aitchison and Allen.

§5. ADHESION AND CRYSTAL FORM OF AN OXIDE FILM

We do not know of any detailed theoretical discussion of the cohesive forces
between an oxide layer and a metal substrate, or any experimental measurement
of the surface energy of the interface. However, all oxides are at least partly
polar; and the charges on the metal and oxygen ions must be strongly attracted
to the substrate metal. Thus strong cohesive forces between metal and oxide
must exist, whether or not the lattice parameters of the metal and of the oxide
are equal or nearly equal.
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Nevertheless, the influence of the lattice parameter of the substrate metal om
the structure of the oxide is of great importance. In some cases (ZnO on the base
planes of Zn) a pseudomorphic structure grows up to a considerable thickness.
(Finch and Quarrell 1934, 1939), the normal oxide structure being squashed into
congruence with that of the zinc underneath. In other cases an oriented over-
growth is observed (Cu,O, FeO); in others (e.g. ALLO, on Al) no orientation is.
apparent.

A theoretical discussion of oriented overgrowths has recently been given by
Frank and van der Merwe (1949, see also van der Merwe 1949) which promises.
to be of great importance for the theory of oxidation. These authors consider
what will happen when the first monolayer of a film to be deposited on a metal
is put down. Their theory is applicable first of all to one solid put down by
evaporation or electro-plating on another, but their ideas are useful also for a
metal exposed to oxygen. In this case, as soon as a monolayer of adsorbed
oxygen is formed, atoms from the metal will start to pass through it by the
mechanism which has already been described. By a monolayer of oxide, then,
we mean a monolayer of oxygen through which one layer of metal atoms has passed.

Frank and van der Merwe denote by a the lattice spacing of the substrate
metal and by b the “natural” spacing of the oxide layer, by which is meant the
spacing that it would have if it were not attached to the metal. This is assumed to
be that ot the oxide in bulk. They then represent the monolayer of oxide (in a
preliminary one-dimensional model) by a row of balls connected by springs of
natural length b and force constant w; that is to say, the restoring force for a
displacement dx is udx. The row of balls is acted on also by a force due to the
substrate, the potential energy of each ball being represented, as a function of
its coordinate x» measured along the substrate, by

YWeos(2nxfa). L. (23)

The “misfit”” M between the substrate and the monolayeris defined by M =(b/a) — 1.
In practical cases b is greater than @ and M is positive. The fit or misfit of the
monolayer and substrate is naturally described in terms of dislocations. If, for
instance, 99 or 101 atoms (balls) lie over 100 of the troughs in the potential (23),
then in equilibrium the majority of the atoms lie nearly at the bottoms of their
troughs, while there is a small region where the atoms ride over the crests, to miss.
a trough or squeeze an extra atom in. This region of misfit is called a surface
dislocation; if a crystal is built above it, it will develop into a dislocation of the
type used in the theory of plastic flow (Taylor 1934; for a review, see Bristol
Conferences on Solids, 1940 and 1947, published by the Physical Society).

The mathematical investigation shows that if a line of balls (atoms) of finite
length is put down on the substrate, then iz its state of lowest energy each ball will
lie at the bottom of a trough, except just near the ends, so long as the misfit M is
less than a critical misfit M given by

2 (pa\
MO“E(W) :

If M exceeds M, by more than a very small proportion, however, and the chain
is in its state of lowest energy, the spacing that the chain will take up is very
nearly its equilibrium value 6. However, even if the misfit is greater than A,
then, if a line of balls is put down with each ball at the bottom of a trough, thev
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will remain there in metastable equilibrium unless M is greater than mwM;—
some 409, greater. Only if M is greater than 1= M, will dislocations be generated
spontaneously at the edge of the chain, so that a chain put down in a compressed
state (as will happen if the balls are put down one by one) can expand to its natural
length.

The application of this model to oxidation is as follows: an estimate of the
interatomic forces shows that M, may be of the order 0-09 in an average case for a
monolayer of oxide, though there may be wide variations from one metal to another.
Thus, if the misfit is less than 99, the first monolayer of oxide should have the
lattice parameter of the substrate. If the temperature of deposition is low, the
same will be true up to a misfit of 149, ; but at high temperatures dislocations may
be generated at the edge of the layer, so the value of the misfit, below which
the oxide layer will in fact take up the parameter of the substrate, is smaller.
If the layer does not take up the parameter of the substrate, each island of cxide
would rotate very easily about a line perpendicular'to the surface; we should not
in this case expect any crientation, either in the first monolayer or in subsequent
growth, except perhaps for a common crystal axis.

Suppose then that the degree of misfit is less than 9 or 149, or whatever the
figure may be, and that the first monolayer of oxide grows with the lattice parameter
of the substrate and covers the whole available surface. By that time the second
and third layers will have begun their growth, and will soon cover the whole
surface too. The film, compressed as it is to fit the lattice parameter of the sub-
strate, is no longer in its state of lowest energy; in terms of the ball and spring
model, n has become two or three times as big without any great change in W,
it being assumed that 1 is mainly due to interaction between nearest neighbours.
But none the less the film is in metastable equilibrium ; it cannot expand by forming
dislocations at the edges, because if the film covers the surface there are no free
edges.

We believe that films such as that of ZnO on zinc are formed in this way. The
first monolayer of oxide is formed with the parameter of the substrate, and the
film continues to grow with this parameter. In the case of aluminium, on the
other hand, the initial misfit is too great for this to happen, and a polycrystalline
or amorphous film results.

It seems a priori highly probable that the thin films (c. 100 a.) formed at mod-
erately low temperatures by the mechanism described in §4 are compressed to
fit the substrate in the way described here, and remain in that state. The com-~
pressive strains, of the order 109, are, of course, much greater than the bulk
material can support; in zinc the misfit is actually 209, ; but it is a fairly obvious.
consequence of the modern theory of strength of solids (see, for instance, Mott
1949 b) that very thin films should show a much higher compressive strength than
the bulk material. At some period in the growth, however, the film must break:
away and achieve its equilibrium lattice parameter; this will certainly have
occurred for thick films (¢. 10~* cm.) growing according to the mechanism of
§2. 'T'wo mechanisms are possible by which the film may break away: slip or
recrystallization. One or other of those processes is probably responsible for
the kink in the oxidation curve shown for copper in Mrs. Garforth’s work
illustrated in Figure 1.
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Some of the consequences ¢f any mechanism by which the film continually
breaks and heals have been explored by Evans, who in particular has shown that
a logarithmic growth law is to be expected in cases of this sort; and when growth
to a thickness of several hundred Angstréms is observed to follow a logarithmic
law, it seems very probable that a mechanism such as this is valid. In general
we may say that this intermediate region between the very thin, probably pseudo-
morphic films of 100 a. or less in thickness, described in §4, and the thick films
growing according to the parabolic law is imperfectly understood.

In conclusion, we would like to express our thanks to Dr. J. W. Mitchell and
the group working under his direction on the experimental side of this subject
for many discussions and permission to reproduce some of their results prior to
publication.
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Parts I and II deal with the theory of crystal growth, parts IIT and I'V with the form (on the atomic
scale) of a crystal surface in equilibrium with the vapour. In part I we calculate the rate of advance of
monomolecular steps (i.e. the edges of incomplete monomolecular layers of the crystal) as a function
of supersaturation in the vapour and the mean concentration of kinks in the steps. We show that in
most cases of growth from the vapour the rate of advance of steps will be independent of their
crystallographic orientation, so that a growing closed step will be circular. We also find the rate
of advance for parallel sequences of steps, and the dependence of rate of advance upon the curvature
of the step.

In part IT we find the resulting rate of growth and the steepness of the growth cones or growth
pyramids when the persistence of steps is due to the presence of dislocations. The cases in which
several or many dislocations are involved are analysed in some detail; it is shown that they will
commonly differ little from the case of a single dislocation. The rate of growth of a surface containing
dislocations is shown to be proportional to the square of the supersaturation for low values and to
the first power for high values of the latter. Volmer & Schultze’s (1931) observations on the rate of
growth of iodine crystals from the vapour can be explained in this way. The application of the same
ideas to growth of crystals from solution is briefly discussed.

Part III deals with the equilibrium structure of steps, especially the statistics of kinks in steps, as
dependent on temperature, binding energy parameters, and crystallographic orientation. The
shape and size of a two-dimensional nucleus (i.e. an ‘island’ of new monolayer of crystal on a
completed layer) in unstable equilibrium with a given supersaturation at a given temperature is
obtained, whence a corrected activation energy for two-dimensional nucleation is evaluated. At
moderately low supersaturations this is so large that a perfect crystal would have no observable growth
rate. For a crystal face containing two screw dislocations of opposite sense, joined by a step, the acti-
vation energy is still very large when their distance apart is less than the diameter of the corre-
sponding critical nucleus; but for any greater separation it is zero.

Part IV treats as a ‘co-operative phenomenon’ the temperature dependence of the structure
of the surface of a perfect crystal, free from steps at absolute zero. It is shown that such a surface
remains practically flat (save for single adsorbed molecules and vacant surface sites) until a transition
temperature is reached, at which the roughness of the surface increases very rapidly (‘surface
melting’). Assuming that the molecules in the surface are all in one or other of two levels, the results
of Onsager (1944) for two-dimensional ferromagnets can be applied with little change. The transition
temperature is of the order of, or higher than, the melting-point for crystal faces with nearest
neighbour interactions in both directions (e.g. (100) faces of simple cubic or (111) or (100) faces of
face-centred cubic crystals). When the interactions are of second nearest neighbour type in one
direction (e.g. (110) faces of s.c. or f.c.c. crystals), the transition temperature is lower and corre-
sponds to a surface melting of second nearest neighbour bonds. The error introduced by the
assumed restriction to two available levels is investigated by a generalization of Bethe’s method
(1935) to larger numbers of levels. This method gives an anomalous result for the two-level problem.
The calculated transition temperature decreases substantially on going from two to three levels,
but remains practically the same for larger numbers.

Note on authorship. Although at all times a constant interchange of ideas took place between
all three authors, the principal contributions of one of us (F.C.F.) are to part IT of this paper.
Part IV, and all the calculations in parts I and III, are due exclusively to W.K.B. and N.C.

A THEORY OF GROWTH OF REAL CRYSTALS

ParT I. MOVEMENT OF STEPS ON A CRYSTAL SURFACE

1. Introduction

The theory of growth of perfect crystals has been developed extensively during the past thirty
years, especially by the work of Volmer (1939), Stranski (1928, 1934), and Becker & Déring
(1935). The essential ideas were put forward earlier by Gibbs (1878).
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According to this theory, when all surfaces of high index (stepped surfaces) have dis-
appeared, the crystal will continue to grow by two-dimensional nucleation of new molecular
layers on the surfaces of low index (saturated surfaces). As in all nucleation processes, the
probability for the formation of these two-dimensional nuclei is a very sensitive function of
the supersaturation. This probability is quite negligible below a certain critical supersatura-
tion and increases very rapidly above it. Assuming reasonable values for the edge energy of
the two-dimensional nuclei, one recognizes that this critical supersaturation should be of the
order of 50 9. At the supersaturations at which real crystals grow (1 %, and even lower) the
probability of formation of nuclei should be, according to this theory, absolutely negligible
(Burton, Cabrera & Frank 1949; Burton & Cabrera 1949, cf. also part III).

Ficure 1. The presence of a kink in a step on a crystal surface.

Recently, Frenkel (1945) pointed out that the structure of a perfect crystal surface above
the absolute zero of temperature would have a certain roughness produced by thermal
fluctuations. He discussed the structure of a monomolecular step and proved that it will
contain a high concentration of kinks, illustrated in figure 1, and introduced before by
Kossel (19277) and Stranski (1928). Burton & Cabrera (1949, cf. also part III) have shown
that the concentration of kinks is even larger than was supposed by Frenkel; this result is very
important from the point of view of the rate of advance of the steps, which will be developed
in part I of this paper. On the other hand, Frenkel generalized this idea to the formation of
steps in a perfect crystal surface, but Burton & Cabrera (1949, cf. also part IV) have shown
that steps will not be created by thermodynamical fluctuations in a low-index crystal surface,
unless, perhaps, close to the melting-point; therefore the steps required for growth can only
be produced, on a perfect crystal surface, under a highly supersaturated environment.

We conclude that the growth of crystals under low supersaturations can only be explained
by recognizing that the crystals which grow are no# perfect, and that their imperfections (in
particular, dislocations terminating in the surface with a screw component) will provide the
steps required for growth, making two-dimensional nucleation unnecessary. This idea,
introduced by Frank (Burton ef al. 1949; Frank 1949) will be developed in this paper, and
we shall see that it explains most of the features of crystal growth at low supersaturations.

This theory of growth of real crystals assumes the existence of dislocations in them, but
does not depend critically on their concentration. The study of crystal growth should perhaps
also explain the formation of dislocations which, as in the case of steps in a crystal surface,

cannot be due to thermodynamical fluctuations. Several mechanisms can be visualized for
40-2

— 36 —



302 W. K. BURTON AND OTHERS ON

the formation of new dislocations during growth (Frank 1949), but no detailed theory has
yet been formulated.

2. Mobility of adsorbed molecules on a crystal surface
We know that in general a crystal surface in contact with its vapour will contain a certain
concentration 7, per cm.? of adsorbed, essentially mobile molecules. Under equilibrium
conditions, the concentration 7y of adsorbed molecules will be given by a formula of the

type nyo — noexp (—WJET), (1)

where W, is the energy of evaporation from the kinks on to the surface; n, contains entropy
factors, but in simple cases will be of the order of the number per cm.? of molecular positions
on the surface.

The process of growth of a crystal surface with steps will be the result of three separate
processes: (i) exchange of molecules between adsorbed layer and vapour, (ii) diffusion of
adsorbed molecules towards the steps and exchange with them, and (iii) perhaps also
diffusion of adsorbed molecules in the edge of the steps toward the kinks and exchange with

them.
In order to discuss the role of the diffusion on the surface we must introduce the mean

displacement x, of adsorbed molecules. This can be defined in quite general terms by Einstein’s
(2)

where D is the diffusion coefficient and 7, the mean life of an adsorbed molecule before being
evaporated again into the vapour. For simple molecules we can write

D, = a¥' exp (— UJkT), (3)
and Vr, = vexp (—W/JkT), (4)

where U, is the activation energy between two neighbouring equilibrium positions on the
surface, distant a from each other, and W, the evaporation energy from the surface to the
vapour. The frequency factors »" and » would both be of the order of the atomic frequency
of vibration (v ~ 10'3sec.™!) in the case of monatomic substances, but they will be different
in the case of more complicated molecules. Using (3) and (4), (2) becomes

%, = aexp {(W! —U,) |2k T}, (5)

assuming v’ ~v. The condition for the diffusion on the surface to play an important role is
that x,>a, and therefore from (5), W/ > U,. This is probably always the case; then x, can be
much larger than « and increases rapidly as the temperature decreases.

In order to have an idea of the values that we can expect for x,, let us consider, for instance,
a (1,1,1) close-packed surface of a face-centred cubic crystal. By simple considerations
regarding the interaction ¢ between nearest neighbours only, W, = 34, i.e. half the total
evaporation energy W = W,+W; while U, ~ ¢ = :IW. However, fuller calculations carried
out by Mackenzie (1950) using Lennard-Jones forces show that U, is considerably smaller,
about 45 . Hence, in this case, (5) becomes

x,~aexp (3¢0/2kT) ~ 4 x 10% (6)

formula:
: 2 _
xs - DsTs’

for the typical value ¢/kT ~ 4.
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It is interesting to notice that x, will be a function of the crystal face considered, both W
and U, being different for different faces. In general, x, will be smallest for the closest packed
surface, because WW| increases more rapidly than U,. For instance, for a (1,0, 0) surface in
a face-centred cubic (f.c.c.) crystal assuming nearest neighbour forces, W = 4¢ and U is
probably still very small. Then

x,~aexp (20/kT) ~ 3 x 10%a.

3. Concentration of kinks in a step

Frenkel (1945) and Burton & Cabrera (1949, cf. also part IIT) have shown that these steps
must always contain a large concentration of kinks. In the case of short-range intermolecular
forces, we can briefly summarize in the following manner the results of the theory which have
an important bearing on growth.

Let a close-packed crystallographic direction be taken as the x-axis, and consider a step
which follows this axis in the mean, so that the surface is one molecule higher in the region
y¥<<0 than in the region > 0. Following the step along the direction of increasing x, points
where y increases or decreases by a unit spacing a are called positive or negative kinks
respectively. For this orientation, the step contains equal numbers of positive and negative
kinks, and their total number is less than for any other orientation. Let 2n and ¢ be the
probabilities for having a kink or no kink, respectively, at a given site in the step. Then we

must have
njq=exp (—wlkT), 2ntq=1,

where w is the energy necessary to form a kink. Hence the mean distance x, = a/2n between
kinks is

xo = sa{exp (w/kT)+2} ~ Laexp (w/kT), (7)
where a is the intermolecular distance in the direction of the step.

As the inclination 0 of the step relative to a close-packed direction increases, the number
of kinks increases. Let 7, and n_ be the probabilities for having a positive or negative kink
respectively.

As an approximation, we neglect the difference between ¢ and unity. Then

2n=mn,+n_, O=n,—n_,

where 7 is the probability for having a kink of any kind and £ is assumed to be small. For any
inclination, and from thermodynamical considerations,

non_ = exp(—2uw/kT).

Thus the mean distance x,(f) between kinks will now be

%(0) = xo{l —§(%0/2)? 0%}, (8)

assuming 6 <a/x, and x, is given by (7).

No detailed calculation of w has yet been made, but simple considerations suggest that w
must be a small fraction of the evaporation energy. For instance, in a close-packed step in
a (1,1,1) face of a f.c.c. crystal, with nearest neighbour interactions ¢, it is easy to see that
w is equal to a quarter of the energy necessary to move one molecule from a position in the
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straight step to an adsorption position against the straight step, equal to 2¢4; hence w = }¢
or {5 W, and the mean distance between kinks is, from (7),

5 = Jaexp (§/2kT) ~ 4a, (9)
for the typical value ¢/k7T ~ 4.

The concentration of kinks in the steps will remain practically unchanged even if the
vapour is supersaturated. Hence the problem of the rate of advance of a step is reduced to
a classical diffusion problem on the surface. The important ratio in this calculation is x,/x,.
From (5) and (7) this is approximately 2exp {(3W,—3U,—w)/kT}. With the estimates of
Wy, U, and w which we have made above on the basis of the simple model of a close-packed
homopolar crystal, this is about 102. Thus it appears that we may generally assume x, > %,
in which case we can perform the diffusion calculation regarding the step as a continuous-
line sink. It is an interesting corollary of this case that the rate of advance of a step is then
independent of its crystallographic orientation. However, the estimate is uncertain for
various reasons, such as the neglect of entropy factors, and we shall also examine the cases
in which #, is comparable with or larger than x. ‘

4. Rate of advance of a step

The supersaturation ¢ in the vapour is defined as
o=a—1, a=plp, (10)

where p is the actual vapour pressure, p, the saturation value, and a will be called the
saturation ratio. We assume ¢ to be constant above the surface. There will also be a super-
saturation o, of adsorbed molecules on the surface (in general, dependent on position)

defined by o, =a,—1, o =n/ng, (11)

where 7, and ny, aré the actual and equilibrium concentration of adsorbed molecules

respectively.
The equations governing the diffusion of adsorbed molecules towards the step are easily

written down. The current on the surface will be
js = _Ds grad ng = Dsnso grad ¢l’ ¢ =0—0g (12)
where D, is the diffusion coeflicient of adsorbed molecules. There will also be a current j,
going from the vapour #o the surface, which is easily seen to be
jv = (“_“s) nsO/Ts = ns()g#/’rs: (13)
where 7, is the mean life of an adsorbed molecule on the surface, defined in § 2.

Let us make the assumption (to be justified a posteriori) that the movement of the step can
be neglected in the diffusion problem, so that the adsorbed molecules have a steady distribu-
tion on either side of the step which is practically the same as though the step were absorbing
molecules without moving. Under these conditions ¥ must satisfy the continuity equation

divj, = Jis
or using (6) and (7) and assuming D, independent of direction in the surface
2V =9, (14)

where x, is the mean displacement of adsorbed molecules, defined in § 2.
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Now if we compare the typical values for x, and x, estimated in (6) and (9) respectively,
we see that in most cases, certainly for monatomic substances, x> x,. Under these conditions,
each molecule deposited from the vapour on the surface near the step will have a high
probability to reach a kink in the step before being evaporated again into the vapour.
Therefore the concentration of adsorbed molecules near the step will be controlled by
evaporation from and condensation into the kinks. Then, provided this exchange is very
rapid, the concentration near the step should be maintained equal to the equilibrium value,
independently of the supersaturation existing in the vapour.

Thus, if we assume that o, = 0 near the step, and ¢, = ¢ far from it, equation (14) has the
simple solution

¥ = oexp (Fy/x), (15)

where y is the distance to the step, the minus sign being used for y>0 and the plus sign for
y<<0. Now the current j going into the step per cm. per sec. will be obtained from (12) using
(15) and putting y = 0. The velocity of the step is then v,, = j/n,, where 1/n, is the area per
molecular position; therefore

Ve = 2oxvexp (— WIKT), (16)

where expressions (1) and (4) for n,, and 7, have been used, and W = W,+ W/ is the total
evaporation energy. The factor 2 comes about because of the contribution from y>0 and
y<0. The advance of the step is therefore owing to the molecules condensing from the
vapour on a strip of width x, at both sides of the step. This expression represents the maximum
velocity of a step in a given direction, and if D, and therefore x, were independent of direction,
then the velocity of the step would be independent of its orientation.

We can now justify our neglect of the motion of the step when treating the diffusion
problem. This is permissible if the characteristic distance (D,/v,,) is great compared with the
characteristic distance x,. Now, from (3), (5) and (16),

Voo X/ D, = 20 exp (—W,[kT) ~ 20 exp (—12) <1.

We believe that (16) is correct, at least in the case of monatomic substances. In the case of
molecular substances we must introduce two possible complications: (i) as Wyllie (1949)
has pointed out the exchange between the kinks and the adsorbed layer might not be rapid
enough to maintain ¢, = 0 near the kinks; (ii) the condition x,> x, is perhaps not satisfied.

It is easy to see that (i) introduces a supplementary factor #<1 in formula (16) given by

F = (A+x7/ar)t, (17)

where 7 is the time of relaxation necessary to re-establish equilibrium near the step. The
supersaturation near the step will then be ¢(0) = (1—/) ¢; # will be smaller than 1, for
instance, when the rotational entropy of the adsorbed molecules is much larger than that of
the molecules in the solid. If condition x, > x, is nevertheless satisfied, then v,, should still be
independent of the orientation of the step.

On the other hand, if x, > x, is not satisfied, the supersaturation near the step will not be
constant, and will be a function of x,. The other extreme case, when x,> x,, is easy to consider.
It is then necessary to discuss the influence of the diffusion of adsorbed molecules in the edge
of the step. If the contribution of the current via the edge is important, then this will help
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to keep the supersaturation constant near the step, even if x,> x,. The most unfavourable case
would be when the current via the edge can be neglected altogether. Then, assuming D, to
be independent of direction, the required solution of (14), around an isolated kink on the

step, 18 B Ko (7 /xx)

where K| is the Bessel function of second kind with imaginary argument and order zero, and
we assume that the supersaturation of adsorbed molecules is maintained equal to (1—/) ¢
at a distance 7 = a from the kink. The current going into every step is then easily calculated
and the velocity of advance of the step is given by

v, = {200x,vexp (— WIkT)} mx /%y In (2% /ya),
where we assume always x,>a and we use the approximate formulae
Kﬂ(a/xs) =In (st/yd)> Kl (a/xs) = —xs/a,
y = 1-78 being Euler’s constant. We may verify once again that, at least for sufficiently small
supersaturations, we may neglect the motion of the kink in treating the corresponding
diffusion problem. The criterion this time is (v %,/D;) <1, where v, = v %/a. Now by
use of (3) and (5)
Uin %5/ Ds = [2mfio exp {— (WU, — W) [ T3] {In (2/y) + (W — Uy) [R T
The exponential factor here remains considerably less than unity for any reasonable estimate
of the energies, especially as the condition x,> ¥, is only likely to arise when U] is unusually
large or W, unusually small, though U, can scarcely exceed W, so as to make the denominator
small.

We see that apart from the factor f, the maximum velocity (16) is multiplied by another
factor ¢y <1, given by ¢y = mx, %, In (2%, /ya). (18)

In the general case, the velocity of advance of the step can also be represented by the general
formula v = 20x,exp (— WIET) feoy (19)
where ¢, is between 1 and the value given by equation (18).

The calculation of ¢, in the general case is a difficult problem. The easiest way to solve it is
to assume that #ere is a diffusion in the edge of the step and that it is important enough for
the current going directly from the surface to the kinks to be neglected. In appendix A we
treat along these lines the problem of a single step with equally spaced kinks.

The relative importance of the current diffusing in the edge of the step and that diffusing
on the surface will be represented by the non-dimensional factor

De neO/Ds M50,
where D, and n,, are the diffusion coeflicient and the equilibrium concentration respectively

of adsorbed molecules in the edge. This factor is equal to (x,/a)2, where x, is the mean dis-
placement of adsorbed molecules in the edge. Actually x2 = D,7,, and by definition

7o = Noga/ Dingg = (1v) exp{(W,+U) [k T};
therefore x2 = D,n,ga/Dingy ~ a*exp {(W,+U,—U,)[kT}, (20)

— 41—



THE GROWTH OF CRYSTALS 307

where W/ is the energy necessary to take an adsorbed molecule from the edge to the surface
and U, is the activation energy for diffusion in the edge.

It is clear that D,> D,; on the other hand, nga<n,. If x,>a, the current going into the
kinks goes essentially via the edge and the point of view adopted above is justified. If, on
the contrary, x,<a, the important contribution is that due to direct condensation from the
surface into the kinks. The case x, ~ a can also be interpreted as if the edge did not exist at all,
since this would correspond to W, = 0, U, = U,, which implies also x, = a. Hence the
method of calculation suggested above should give for x, ~ a the same result as if the influence
of diffusion in the edge were neglected altogether.

1 _______________________

%

|
i 10 10? 10° 10
Xola

Ficure 2. The factor ¢, as a function of x,/a for the values of x,/a indicated on the curves.

It is difficult in general to estimate x,. In the particular case of a close-packed step in a
(1,1,1) face of a f.c.c. crystal, with nearest neighbour interactions ¢, we can estimate
W. =24, U, ~0, U, ~2¢, hence x, ~a. Assuming this to be the case, the general formula
given in appendix A reduces to

1/cy = 1+2bIn{(4bx,/a)|(1+ (1 +b%)1)}, b = x,/2mx,, (21)

which is represented in figure 2 as a function of x,/a for several values of x/a. Itis interesting
to notice that if x, increases indefinitely in (21), then

o =, xoIn (4x,a),

which practically coincides with (18) as we should expect. We notice that ¢, differs appreciably
from unity for x,>x,.

Vol. 243. A. 41
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In conclusion to this paragraph, and from the estimates of x, and x, made in §§2 and 3,
we deduce that in most cases of growth from the vapour the rate of advance of the step must be
practically independent of its orientation. In some cases, perhaps, the factor ¢, in (19) could be
smaller than 1 for the close-packed slowest steps, containing a minimum number of kinks.
As the orientation of the step deviates from that of closest packing, ¢, will become rapidly

equal to 1.

5. Parallel sequence of steps
Another interesting problem is that of the movement of a parallel sequence of steps

separated by equal distances y,.
If we assume that the distance x, between kinks in every step satisfies the condition

xy<x,, and that near every step o, = 0, the solution of equation (14) is easily seen to be
cosh (y/x,)
_ 22
v 7 cosh (yo/2%,) (22)
between two steps, where y is the distance from the mid-point between two steps. The
current going into every step is again calculated from (12), using (22) and putting y = 1y,;
the velocity of every step is then

Ve = 20x,vexp (— W/kT) tanh (y,/2x,), (23)

which reduces to (16) if y,— co.
In the general case where (i) the interchange with the kinks is not rapid enough to
maintain ¢, = 0 near the step and (ii) the condition x,<x, is not satisfied, we obtain again

a general formula of the type
Vo = 20x,vexp (— W[k T) tanh (y,/2x,) fic,, (24)

where ¢,<1 is a function of ¥, and y,. The calculation of ¢, is now rather complicated.
In the particular case when %, ~ ¢ in the edge of the steps, one can give for ¢, the approxi-

mated expression
1/¢y = 1+ 2b tanh (yo/x,) [In {(4bx,/a)/(1 4 (1 4 b62)})}+ (2x,/y,) tan~1 5], (25)
b = x,/2mx,.
For y,— oo this expression reduces of course to (21). As y, decreases, ¢, in general will be

nearer 1 than (21) is, as we should expect, but this does not mean that for a sufficiently small
value of y, we shall get ¢, = 1, because of the second term in the parentheses in (25).

6. The rate of advance of small closed step-lines

We know that, given a certain supersaturation in the vapour, there will be a certain two-
dimensional nucleus which is in unstable equilibrium with it. The shape and size of this
¢ritical nucleus are perfectly defined; its shape has been studied in detail in one special case,
Burton et al. 1949; cf. also part ITI. Itisinteresting to notice at this point that the number of
kinks per unit length in every position of the edge of the critical nucleus is the same as that
in an infinite step having the same orientation.

If the nucleus is larger than the critical one it will grow. Then its shape will be determined
essentially by the differences in velocity for the different orientations and not by thermo-
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dynamical considerations. In particular, if the velocity is the same for all orientations, it
will become circular. The study of the shape of a growing nucleus of large dimensions will be
considered in detail by one of us (F. C. F.) in a later paper; here we are concerned with
the absolute value of the velocity when the dimensions are not very different from those of
the critical nucleus.

Let us consider first the case of independence of velocity on orientation, when the nucleus
is circular. We shall consider afterwards what changes can be expected when the velocity
depends on the orientation.

The mean evaporation from the nucleus to the surface will be a function of its dimensions.
Ifits radius is p, and we define an edge energy of the nucleus equal to y per molecule, the
mean energy of evaporation will be

W.(p) = W,—(valp),

where a is as usual the intermolecular distance.

Let o be the supersaturation in the vapour; the nucleus will grow, but at every moment a
steady distribution of adsorbed molecules will be formed provided the nucleus is not too
small. The influence of the movement of the boundary on the diffusion problem can be
neglected for the low supersaturations considered. The steady supersaturation in the surface
will satisfy the continuity equation (14) which now becomes

BV (r) =y (1), §(r) = o—0,(r). (26)
The solution of this equation is
v = D P <),

V) = WA R () (21)

where I and K, are the Bessel functions of first and second kind with imaginary argument.
¥(p) is the value of ¢ near the edge of the nucleus. If the interchange of molecules between
the nucleus and the surface is rapid enough, the supersaturation o(p) near the edge of the
nucleus will be maintained equal to that which would be in equilibrium with it. This super-
saturation o,(p) is given by

xp [~ W,(s)[kT]
70) = ey T IWAT]

therefore V(p) = o—o,(p) = oc—[exp (ya/pkT)—1]. (28)
The current going into the nucleus is now

j = 271/)D5n30(3¢/07)rzp = 2’”Dxns0¢(p)/10(p/xs) KO(p/xs)’
where the formulae

Iy(z) = L(2), Ki(z) =—K(2), I(2)Ki(2)+1(2) Ko(2) = 1/z

—1 =exp (ya/pkT)—1;

have been used. The radial velocity, v(p) = j(p)/2mpn,, is therefore
v(p) = Bvexp (= WIET) ¥ (p)[ply(p/%:) Kolp]%,), (29)

41-2
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where we have used the expressions for x, 7, and ny, given by (2), (4) and (1). Current and
velocity change sign when ¢,(p,) = o, which defines the critical nucleus to have a radius p,

given by
pe=7va/kTIna, «=1+0. (30)

When p>x; we can use the approximation
Lo(plx;) Kolp[xs) = *5/2p,
v(p) = vola—ar?)jo, a=1+o, (31)

v(p) = (1= pofP), (32)

where v,, is the maximum velocity (16) of a straight step of any orientation, calculated in § 4.
This formula will be valid down to p = p,, provided the supersaturation is low enough for g,
to be larger than x,, and Ina~¢. As ¢ increases and p, decreases, v(p) will be a more
complicated function for p ~ p,.

It is also interesting to consider the rate of advance of a sequence of concentric circles,
distant y, from each other. The diffusion problem can also be solved in a similar way. The
radial velocity of the circle of radius p turns out to be

v(p) = 2ox,vexp (—W/KT) tanh (55/2x,) (1 p,/p), (33)

when p>x,, y,<p and Ina ~ 0. We see that v(p) is again of the general form (32), if v, means
now the velocity (23) corresponding to a sequence of parallel steps. We see therefore that
the only change in the rate of advance of a large closed step of radius p, with respect to that
of an infinite step is the factor (1 — p,/p). This is just what we should expect because the mean
supersaturation near the edge of the nucleus is not zero, as in the case of the straight step, but
7p./p-

The same general formula (32) will apply also when (i) the interchange of molecules
between nucleus and surface is not rapid, and (ii) the velocity depends on the orientation of
the edge. Then the nucleus will not be a circle, but the close-packed slowest orientations of
the edge will move according to (32) where v,, is now given by the general formula (24);
p will be the normal distance from the edge to the centre of the nucleus and p, that corre-

sponding to the critical nucleus.

so that (29) becomes

or if ¢ is small,

Part II. RATES OF GROWTH OF A GRYSTAL SURFACE
7. Introduction

In part I we have studied the movement of steps on a perfect crystal surface, without
considering their origin. This information is sufficient to calculate the rates of growth of
stepped surfaces (those of high index) where the steps exist because of the geometry of the
surface; nevertheless, it is clear that these steps will disappear in any finite crystal, after
a finite amount of growth which completes the body bounded by close-packed, unstepped

surfaces circumscribed to the initial crystal.
Frank (1949) has shown that further growth of these surfaces must be attributed to the
presence of steps associated with crystal defects, in particular dislocations having a component
of displacement vector normal to the crystal face at which they emerge, ‘screw dislocations’

— 45 —



THE GROWTH OF CRYSTALS 311

for short, though they are not necessarily ‘pure screw’ dislocations. He has also shown that
when the crystal is growing under a supersaturated environment, the step due to a dislocation
winds itself in a spiral in such a way that a single screw dislocation sends out successive turns
of steps (figure 3). If the step is due to a right- and left-handed pair of dislocations, they will
send out closed loops (figure 4) provided their distance apart is greater than the diameter
of a critical nucleus. In both cases the dislocations will form pyramids and the concentration
of step lines thereon will be large and practically independent of the number of dislocations.
This provides an interpretation of the pyramids of vicinal faces long recognized as a normal
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Ficure 3. Growth pyramid due to a single screw Ficure 4. Growth pyramid due to a pair of
dislocation. dislocations.
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feature of slow crystal growth (Miers 1903, 1904). In this part we shall study in more detail
the mathematics of these pyramids (§§ 8, 9); once the rate at which these pyramids grow is
known we shall apply the results to growth from the vapour using the formulae for rate of
advance of steps deduced in I (§§10, 11). The application of the same ideas to growth from
solution will also be considered briefly in §12. The resulting topography of the crystal
surface will be discussed by one of us in a later paper.

8. The growth pyramid due to a single dislocation

Let us first consider the spiral due to a single dislocation ending on an otherwise perfect
crystal surface. We may suppose that, as new layers are added, the direction of the dislocation
remains perpendicular to the surface, since this will usually minimize the elastic energy. If
the rate of advance of a step is independent of its orientation (probably the case during
growth from the vapour, see I) the growing spiral will form a low cone, but it will tend to
form a pyramid when the rate of advance depends on the orientation (as is illustrated in
figures 3 and 4). We consider first the case of a growing cone.
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Following any increase in supersaturation, the step due to the dislocation will rapidly
wind itselfup into a spiral centred on the dislocation, until the curvature at the centre reaches
the critical value 1/p,, at which curvature the rate of advance falls to zero; the whole spiral
will then rotate steadily with stationary shape.

We know (I, formula (32)) that the normal rate of advance of a portion of spiral with
radius of curvature p is given by v(p) = va(L— p,/p), (34)

provided the supersaturation is not too high. Now let 6(r) represent the rotating spiral, in
(rotating) polar co-ordinates (7, #). The radius of curvature at a point r will be

p = (147202 (20" 41203 +10"), (35)
0" and 0" being the derivatives of d(r). If the angular velocity of the whole spiral is w, the
normal velocity at the point r is o(r) = or(1+1202), (36)

We must now find 6(r) and w from these three equations.
A good approximation is obtained by taking an Archimedean spiral

r—2p,0>0, (37)
which has the proper central curvature. w is then given by
W =0,/2p,. (38)

This approximation does not satisfy (34), especially for small 7, but nevertheless gives a good

approximation to .
A better approximation can be obtained in the following way: one obtains the solutions

for small 7 (neglecting r?) and for large r (neglecting 1/72):
r=>0: 0 =1/2p,—wr/3vep, ' (39)
r—>o00: 0 = (0fve) (1+ p,fr). (40)
Then, choosing a general expression of the form
0" =a+b/(1+cr), (41)
one determines, a, b, ¢ and  in such a way that (41) reduces to (39) and (40) for the proper
ranges of 7. We obtain in this way
0= gy et +r/3épc>],} )
0 = 3t,/2p,(1+8%) = 0-630,/2p,.

This solution satisfies (34) within a few units per cent of v,, for all values of p. The interesting
point is that the value of w obtained differs from (38) only by a factor close to 1, showing
that w is insensitive to the actual law of dependence of v on p in the range in which p ~ p,.
Even the crudest approximation to (34),

p=p,;. v=0; PPt V=V,

(Frank 1949) gives an angular velocity only twice as large as (38), i.e. just over three times
the best approximation (42).
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In the rest of this part, the number of turns of the spiral per second, /27, will be called
the activity. The actual rate of vertical growth R of the pyramid and therefore of the crystal

will clearly be
R = wa/2m = nyQu,[4mp,, (43)

where a = n, Q is the height of a step (n, the number of molecular positions per cm.? in the
surface, Q the volume of a molecule), and we have used the approximation (38) for .
The distance y, between successive turns of the spiral for large 7 is given by

Yo = 2m|0" = 4mp,. (44)

These formulae will also be approximately valid when there is an influence of the crystallo-
graphic orientation on the rate of advance of the steps. v, is then the value corresponding to
the slowest advancing orientation, and p, half the dimension of the critical two-dimensional
nucleus.

9. The growth pyramids due to groups of dislocations
9-1. Topological considerations

We now consider the interactions between the growth spirals centred on different dis-
locations. We have already considered the case of a pair of opposite sign, and seen that if
they are closer together than a critical distance (2p, in the simple case) no growth occurs,
while if they are further apart than this they send out successive closed loops of steps. It is
obvious that if there are fwo such pairs these loops unite on meeting, and the number of steps
passing any distant point in a given time is the same as if only one pair existed. The whole
area may be formally divided into two areas by a locus of intersections of the two families,
and one area may be considered to receive steps from the one centre, the other from the other
centre.

Hence two similar pairs of dislocations of opposite sign, separated by a distance large
compared with the separation in the pairs, have the same activity as one pair alone. Unless
the separation between pairs is a visible distance, there will be no macroscopic distinction
from the case of one pair.

If the two families of loops are circles growing at the same rate the locus of intersections
is a hyperbola in the general case, and in the symmetrical case a straight line bisecting the
line of centres. Consideration of the locus of intersections, though trivial in the present case,
is useful for the treatment of more complex cases later. The conclusion remains valid if the
loops are not circles, but, on account of dependence of growth rate on crystallographic
orientation, are deformed into polygons. The same point applies in cases treated later.

We chose to start with the case of two opposed pairs as the simplest, since it can be topo-
logically analyzed in terms of the locus of intersections of growing circles. When we consider
two simple dislocations, instead of pairs, we have to consider the locus of intersections of spirals.
If they are of opposite sign, a locus of intersections still divides the area into two parts which
may be said to be fed with steps from each centre respectively. Of the possible loci of inter-
sections, depending on the relative phase of rotation of the two spirals, the most important one
is that which is symmetrical—the bisector of the line of centres. For in this case there is
a possibility for an influence to be transmitted along each step from the point where turns of
the two spirals meet, in to the respective centres, and there modify the rate of rotation. If
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they meet nearer to the centre of one than the other, there is . tendency for the rate of
rotation of the former to be increased. So, in time, the two become synchronized in phase
and the locus of intersections is the symmetrical one. Asshown in appendix B, the increase in
rate of advance of the steps which is transmitted along the spirals from their meeting point
to the neighbourhood of their dislocation centres produces a small increase in the rate of
rotation of the spirals amounting probably at most to a few units per cent when the distance
between dislocations is of the order of 3p, and decreasing exponentially for larger distances.
Then the activity of the pair is indistinguishable from the activity of one; at the same time
there is no important topological difference from the case of growing circles.

Ficure 5. A pair of dislocations of like sign, separated by a distance =48 > 2mp,.

A pair of dislocations of like sign gives a more complex situation. If they are far apart, a locus
of intersections still divides the area into two parts, which may be said to be fed with steps
from each centre respectively. As before, there will be a tendency for the symmetrical case
to establish itself. The locus of intersections is then no longer a straight line, but an S-shaped
curve. If the spirals are represented by equation (37) and their centres are a distance / apart,
thelocus crosses theline of centres atan angle tan~! ({/4p,) and passes to infinity on asymptotes
which make an angle cos~! (2mp,/l) with the line of centres (figure 5). The activity is still
indistinguishable from that of one dislocation.

However, if the centres are closer together than half the radial separation between successive
turns, i.e. than 2mp,, the spirals have no intersections except near the origin. The locus of
intersections is now an S-shaped curve running from one centre to the other, and no longer
divides the area into two (figure 6). In this case the turns of both spirals reach the whole of
the area. In the limiting case in which the distance between dislocations / is much less than
p, we have effectively the complete Archimedean spiral r = 2p,0, with the branches for
both negative and positive 7. Actually it still consists of a pair of spirals, which exchange
centres on meeting, at every half-turn. If/<p, this shift of centres should scarcely affect the
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rotation of the spirals, so that the activity of the pair should be fwice the activity of a single
dislocation. For small non-negligible values of //p, we may crudely estimate that the shift of
centres imposes a delay corresponding to the time required for an unperturbed spiral to turn
through an angle of the order of magnitude //p,, but we make no quantitative estimate

Ficure 6. Pair of dislocations of like sign, at a distance d < 27p,.

Ficure 7. A group of dislocations of the same sign.

beyond saying that the activity of the pair now lies between 1 and 2 times the activity of
a single dislocation.

A group of s dislocations of the same sign, each a distance smaller than 27p, from its next neigh-
bour, will generate a spiral system of s branches. Supposing they are arranged in a line (the
most likely arrangement, since groups of dislocations usually belong to ‘mosaic’, ‘subgrain’
or ‘lineage’ boundaries), and the length of the line is L, it is easy to see that each branch will
take a time of the order of 2(L-+2mp,) /v, to execute a circuit round the group so that the
resultant activity of the group is s/(1-+L/2mp,) times that of a single dislocation (figure 7).

Vol. 243. A. 42
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If L is small compared with p,, the activity of the group is s times that of a single dislocation;
if L is large, and the average distance between dislocations is [ = L/S, the activity is 2mp,/[
times that of a single dislocation.

In the more general case of a group of like dislocations not in a straight line, we may
replace L in the above formula by 4P, where P is the perimeter of the group. But in this case
it may happen that the growth fronts have difficulty in penetrating into the group itself.
The dislocation group will still promote growth outside it, but may develop a pit in the
surface of the crystal.

In concluding this subsection we can say that the activity of a group of dislocations is in
general greater than that of a dislocation alone by a factor ¢, which in the case of a group of
dislocations of the same sign can be as great as the number of dislocations contained in it.

In any case, the distance y, between steps produced by the group, far from it, will be given
by their rate of advance v, divided by the number of steps passing a given point per sec.:

¢w/2m. Therefore, using (38),
Yo = 4mp,fe. (45)

We shall see in § 10 that in spite of the fact that the activity of a group can be several times
greater than that of a single dislocation, the absolute value of the activity cannot surpass a
certain maximum, the reason being that the rate of advance decreases when the distance

between steps decreases.

9-2. General case

Suppose now we have any distribution whatever of dislocations in a crystal face, and a fixed
degree of supersaturation ¢, and consequently a fixed value of p, (where ¢ and p, may be
slowly varying functions of position on the face). We now make a formal grouping of the
dislocations. The first group consists of inactive pairs, all pairs of dislocations of opposite sign,
closer together than 2p,. These have no activity by themselves, and their only effect, save in
exceptional cases when they may possibly fence off a region of the crystal face, and inhibit
growth there, is to impose a small delay on the passage of steps originating elsewhere, which
to a first approximation may be disregarded. When a particular dislocation has two neigh-
bours closer than 2p,, the pairing may be made arbitrarily, but in such a way that as many
close pairs as possible are assigned to this class. We now take 2mp, as the effective distance
within which dislocations influence each other’s activity, and by drawing imaginary lines
connecting all dislocations closer together than this, divide all the remaining dislocations
into groups, whose members influence each other’s activity, but in which the groups are
without influence upon each other. The number of these groups will increase with the
supersaturation. Each group can be assigned a strength s = 0, +1, £ 2, ..., according to the
excess of right-handed over left-handed screws in the group. A group of strength 0 has an
activity ¢ times that of a single dislocation, where ¢ is now approximately 1 and generally
slightly greater (the inactive groups of this strength have already been put into a separate
class). If the supersaturation is increased, so that p, decreases, ¢ tends rapidly to 1. When it
reaches 1 the group can be subdivided into two, of strengths s,, 5,, where s, +s, = 0. If the
dislocations are in random arrangement, | 5; | will seldom exceed 1 or 2, but it must be borne
in mind that dislocations are likely to be in regular arrangements, as in mosaic or subgrain
boundaries, in which case this conclusion does not necessarily follow.
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Reduction of p, will also transform some of the inactive pairs into active groups of
strength 0.

Groups of strength s== 0 may have an activity up to ¢ =| s | times that of a single dislocation.

With increase of supersaturation, diminishing p,, the groups of strength s subdivide into
groups of strength s,, 5,, where s,-+s, = s. Since 5; and s, can be of opposite signs | s; | may
be larger than s. But with increasing supersaturation the groups are ultimately all sub-
divided into single dislocations behaving independently.

At every stage prior to this, there is in general some group more active than the rest.

The resultant activity is always that of the most active independent group.

10. Rate of growth from the vapour

Let us first consider the simplest case of one screw dislocation in an otherwise perfect
crystal surface. The rate of growth will then be given by (43), where v,, is the rate of advance
of the steps, far from the centre of the spiral.

The value of v,, has been calculated in I, formula (24), that is to say,

v, = 20x,p exp (— WIKT) tanh (y/2x,) feo(xo, o), (46)

where ¢ is the supersaturation, ¥, the mean displacement of adsorbed molecules, v a frequency
factor, W the evaporation energy, y, the distance between successive turns of the spiral, f a
factor taking account of the fact that perhaps the exchange of molecules between the step
and the adsorbed layer is not rapid enough to maintain around them the equilibrium
concentration of adsorbed molecules, and ¢, another factor, which is a function both of y,
and of the distance x, between kinks in the steps, and given in general by formula (25), I.
According to the estimates made in I for x; and x, we expect the condition x, > x, to be satisfied
in most cases; then the factor ¢, is of the order of 1, and the rate of advance of the steps is
independent of their orientation. In this case, using (46) and (44) for the distance y, between
successive turns of the spiral, (43) becomes

R = pQnyvexp (— W/kT) (0?/0,) tanh (¢,/0), (47)
where o, = (2mp,[x,) 0 = 2myalkTx, (48)
(cf. I, equation (80)). For low supersaturations (¢ <o) we obtain the parabolic law
R = pOnyvexp (—W/kT) o?/a,. (49)
For high supersaturations (6> ;) (47) becomes the linear law
R, = fQnyov exp (—— WIkT), (50)

which corresponds to the case when x, is larger than the distance between successive turns of
the spiral. We see that there is a critical supersaturation ¢}, given by (48), below which the
rate of growth is essentially parabolic, and above which it is essentially linear. For the typical
values y/kT ~ 4, x, ~ 4 x 1022 we obtain ¢; ~1071. In figure 8 we plot the factor

RR, = (¢/0,) tanh (/o)
as a function of ¢/¢; (continuous curve).

42-2
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In the case (an unusual one, we believe) when the condition x,>x, is not satisfied,
expression (47) has to be multiplied by the factor ¢,(¢/a,, b) given by (cf. I, formula 25)

¢o(0)oy,b) = {1+2b(A+Bo/r,) tanh (a,/0)}71,
where b= xy/2mx, A=In[4bxJa(l+ (1+b%))], B=tan!b.

%o/ ¢( 0, b)

_____________________________ — 0
2
10 _._-——-"}
m——
—_—— T __-f1 0950
.’_/’ /—‘i)—-—/
//
0'/// 9
100 - ——7
- 10 0-312
7 U
/x// ,////’/
o =
= X
| i |
5 10
olo

Ficure 8. Correcting factor R/R; to the linear rate of growth as a function of o//o;. The numbers on
" the curves indicate the values of x,/a.

For low supersaturations (¢ <<0,) the parabolic law (49) will be multiplied by the factor
¢(0,0) = (14+204)71;

for high supersaturations (¢> 0,), the linear law (50) will be multiplied by
¢o(00,b) = (14+2Bb)~1,

which can be included in the unknown constant f. The factor ¢,(0, ) is always smaller
than ¢y( 00, 4). The correcting factor {(¢/s,) tanh (¢,/0)} ¢y(o/0y, b) cy( 00, b) is also represented
in figure 8; for a given value of 4, 4 is also a slowly varying function of x,/a. We see that the
influence of the factor ¢, is important for x/x; > 1, which we do not think will usually occur.
As x,/x, increases, the linear law is reached for higher values of ¢/¢,.

~ Similar considerations apply to the rate of growth produced by a group of dislocations. If
the group is a balanced one (equal number of right- and left-handed dislocations, strength
s = 0) then there must be another critical supersaturation ¢, below which no growth occurs
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atall. ¢, will be defined by the condition 2p, = [, where [ is the maximum distance between
pairs of dislocations actually coupled by a step; therefore

oy, = 2yalkTI. (51)

For an unbalanced group (strength s==0), or a balanced group above g, the rate of growth

will be given by
R = Qnye(0) v, /4mp,, (52)

where the factor ¢(o) is of the order of magnitude 1 for a balanced group, but can be larger
for an unbalanced group; in both cases ¢(¢) tends ultimately to 1 when ¢ increases. Using
(46) (assuming ¢, = 1) and (12) for the distance y, between steps, (52) becomes

R = fQnyvexp (— WIkT)e(o) (62/0,) tanh [o,/e(0) o]. (53)

We see from this expression that, however large¢(¢) is, R cannot surpass the linear law (50).
On the other hand, R cannot be smaller than (47) for an unbalanced group, but it could
become zero for a balanced group below the critical supersaturation a,.

In the general case of an arbitrary distribution of dislocations in the crystal face we expect
to have values for the rate of growth between that for a single dislocation (47) and the linear
law (50), according to the distribution occurring in the particular crystal considered.
A critical supersaturation o, of the type (51) could occur in some random distributions of
dislocations or a grouping of dislocations in balanced groups only; nevertheless, there is
evidence showing that the dislocations are distributed in a very irregular way, and groups
of dislocations of the same sign occur in mosaic or subgrain boundaries, in which case we
do not expect critical supersaturations of the type (51) to occur.

11. Comparison with experiment

There are few quantitative measurements of the rate of growth of crystals from the
vapour. The most interesting from our point of view are those of Volmer & Schultze (1931).
These authors studied very carefully the growth from the vapour of naphthalene, white
phosphorus and iodine crystals just below 0°C, under different supersaturations ¢ (from
1073 to 107!). For all three substances they found a rate of growth proportional to the
supersaturation. This linear law was valid for G;,Hg and P, down to the lowest super-
saturation used (~ 1073), but for iodine the rate of growth becomes smaller than that given
by the linear law when ¢<10-2.

Let us first compare their linear law with (50) calculated in the preceding section for
high supersaturations. This formula is actually the same as that used by Hertz (1882) and
other authors (Volmer 1939; Wyllie 1949) for the growth of liquids and crystals from the
vapour; it can be written also in the equivalent form

R = fQpy(2mrmkT) o, (54)
as follows from the equality

ngv exp (— WIkT) = py(2mmk T} (55)

representing the balance between the current of evaporation and that of condensation at
equilibrium. £ in (54) is usually called the condensation coefficient, j)o is the saturation pressure
and m the mass of a molecule.
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In table 1 we compare the experimental linear laws obtained by Volmer & Schultze (1931)
with (54). The first column gives the average experimental value for R/o. The supersatura-
tion ¢ was obtained by maintaining a reservoir at 0° C and cooling the crystal under examina-
tion to a temperature —A7™°C. Assuming that the vapour pressure between the two crystals
is uniform, the supersaturation at the growing crystal is ¢ = WAT/kT?. The second column
gives the theoretical values for R/fo from (54), taking for p, the values measuied by Gillespie &
Fraser (1936) for I,, by Centnerszwer (1913) for P, and by Andrews (1927) for C, Hg. The
first row gives the Volmer-Schultze results for liquid Hg, for which careful measurement by
Knudsen (1915) showed that # = 1. For all the three molecular crystals, f<1.

TaBLE 1. LINEAR RATES OF GROWTH R FROM THE VAPOUR AT 0° C,
AS FUNCTIONS OF SUPERSATURATION

R/o (exp.) R/fo (theor.) w v

(cm.[sec.) (cm./sec.) £ (eV) (sec.™1)
Hg (liquid) 0-66 x 10~ 0-6 x 10~ 11 0-66 108
I, 09 x10~* 3 x10—* 0-3 0-70 5x1016
P, 0-9 x10-% 0-8x 10— 01 0-63 1015
CioH, 0-8 x10-* 15 x 10~ 0- 079 1018

The last two columns in table 1 give the values of W and v deduced from (22). For Hg
the frequency factor is of the order of the frequency of atomic vibrations, as we should expect;
in the other cases v is larger, due to the difference in rotational entropy between the crystal
and the vapour.

Coming back to the deviations from the linear law, we notice first that P, and C,,Hy
follow the linear law to the lowest supersaturations observed. That means that ¢, is smaller
than 10-3, and therefore, from (48), that x> 10%a. This is not surprising; in fact, the estimate
of x,/a made in I, equation (6), is valid for spherical molecules, for which the energy of
evaporation W of an adsorbed molecule was assumed to be of the order of $¥; in the case of
a flat molecule like C, Hg, we expect W, to be larger, and therefore x,/a will also be larger.

Figure 9 gives the results (logarithmic scale for both axes) obtained by Volmer & Schultze
on several I, crystals. The experimental rates of growth are not reproducible even for the
same face of the same crystal; this is not unexpected on the basis of the present theory.

Assuming that the rate of advance of steps is independent of orientation (x,>x,), one can
choose a value for ¢; ~ 0-2 such that most of the experimental results are contained between
the rate of growth (47) of a single dislocation (continuous line in figure 9) and the linear
law (50) (broken line in figure 9). Taking ¢, ~ 02 and y/kT ~ 4, we deduce from (48),
x,~10% for I, at 0°C, which is in reasonable agreement with what we should expect
(cf. I, equation (6)).

Nevertheless, one notices that the experimental rates of growth for the lowest super-
saturations are below the theoretical curve (47); in particular, the rate of growth at

¢ = 3-8x1073(AT = 0°037)
is < 10~3 times the rate of growth given by the linear law. The reduction given by formula (47)
is only a factor ¢/o, ~ 5 x 1072 with respect to the linear law. This fact could be explained

in a number of ways:
(i) Itisan obvious corollary to our view of crystal growth that it is susceptible to poisoning

by traces of impurity, particularly at low supersaturations at which the number of

— 55—



THE GROWTH OF CRYSTALS 321

dislocations producing growth is smallest. From this point of view new measurements of
the rate of growth would be very welcome.

(i) There may be a critical supersaturation of the type (51) of the order of ¢, ~ 1072, and
therefore the dislocations are about 10~3 cm. apart; nevertheless, we are loath to draw this
conclusion from such slight evidence.

(iii) Of course, it would be possible to choose a larger value for ¢}, in order to explain the
small rates of growth at the lowest supersaturations, but the corresponding value for x, ~ 6a

lOF-

[ | ! r [ |
5.10° 102 5.10° 101 5.10' 1
g

Ficure 9. The rate of growth of I, crystals at 0° C as a function of o (Volmer & Schultze 1931) in
a logarithmic scale. The broken line is the Hertz law with a condensation coefficient £ =0-3.
The continuous curve is the rate of growth of a single dislocation (formula (47)) with x, = 10%.
The dotted curve is that of a single dislocation assuming x,= 10, x, = 103a.

would be too small. Another alternative is to suppose that the condition x, > x, is not satisfied
for I,. Inorder to decrease the number of degrees of freedom, let us assume that the condensa-
tion coefficient f is due only to the factor ¢,(c0,b). That fixes xy/x, ~ 10. Assuming for
x, ~ 102a, one obtains the dotted curve represented in figure 9. As we said before we do not
think that a value xo/x, ~ 10 is actually possible. This point will be decided when the topo-
graphy of a crystal grown from the vapour is observed. If, as we believe, x,<x, the steps must
be circular, if x,> %, then they must follow the crystallographic orientation, as is observed
in the case of growth from solution (Griffin 1950; Frank 1950).

We have been considering the rate of growth of macroscopic surfaces, for which the
growth is due essentially to the molecules condensing from the vapour; in this case formula
(54) represents the maximum rate of growth for a given surface. When the dimensions of the
surface are small, diffusion of molecules from neighbouring surfaces can give an important
contribution to its growth, and the rate of growth may be substantially greater than (54).
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For instance, Volmer & Estermann (1921) studied the growth of small crystals of Hg at
—63° C. The crystals had a plate shape, the thickness # was not observable but was estimated
to be of the order of 10%a. The rate of growth of the edges was estimated to be 103 times that
given by (54). The ratio between the contribution to the growth from diffusion on the flat
surface and directly from the vapour should be 2x,/k. Therefore we deduce x; ~ 10% for
Hg at T'= 210° K, which agrees with the value that we should expect.

12. Growih from solution

We consider now, very briefly, the application of the preceding ideas to growth from
solution. Although it is clear that from a qualitative point of view there is no essential
difference between growth from the vapour and from solution, a quantitative theory of the
rate of growth from solution is much more difficult.

First of all, we expect the rate of advance of a step in the crystal surface to be a definite
function of the distance x, between kinks in the step, because although x, is always small,
the diffusion of solute molecules towards the kinks, either through the solution, on the
surface or in the edge of the step, is now much slower than on the free surface of a crystal. It
is difficult to decide the relative importance of these three currents. For instance, the ratio
between the current through the solution and on the surface will be represented by the
factor DNya/D,ng,, where D and D, are the diffusion coefficients and N, and 7, the saturation
concentrations in the solution and on the surface respectively; it is likely that D> D, but
also Nya<ng, therefore the factor above may be greater or smaller than 1. Nevertheless, for
the time being and in order to simplify the problem, we shall suppose that the contributions
from the diffusion on the surface and in the edge can be neglected. Even under these condi-
tions we find another difficulty in the fact that neglect of the motion of the sinks is no longer
generally justifiable.

Let us suppose we have a set of parallel steps, at distance y, from each other, in one of the
close-packed crystallographic directions (for which x,, the distance between successive
kinks, is a maximum). As an approximation the diffusion through the solution can be broken
up as follows: At distances r<x, from each kink we have a hemispherical diffusion field
around each kink (provided D/, > %y, otherwise the movement of the kink cannot be
neglected) with the diffusion potential (1 —a/r) 0(x,), where o(x,) is the supersaturation at
a distance x,; at distances r between x, and y, from each step we have a semi-cylindrical
diffusion field around each step (provided D/vy,>y,) with the diffusion potential

[In (go/26] 7 [o (%) In (g/r) + 0 () In (7/x)],

where o(y,) is the supersaturation at a distance y,; and finally, at distances z from the crystal
surface between y, and J, the thickness of the unstirred layer at the surface of the crystal, we
have a plane diffusion field with the diffusion potential [(z—y,) o+ (0—2) a(yy)] (0—y,) 1,
where ¢ is the supersaturation in the stirred solution. The latter diffusion potential applies in
any case, but it would be improper to equate the flux calculated from its gradient to the rate
of growth R of the crystal unless D/R>§. Usually D/vg,, D/vy., and D/R are not very
large unless both the concentration and the supersaturation in the solutions are small. We
assume in the following considerations that this is the case.
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Under these conditions and in terms of the supersaturation ¢(x,) the rate of advance of

every step is clearly
Ve = DNyQ2ma (x,) [ %,- (56)

As v, is proportional to the number of kinks per cm., 1/x,, the velocity of the step will increase
appreciably as the inclination with respect to the close-packed slowest direction increases.

Equating the sum of the hemispherical fluxes going to all the kinks in the step to the semi-
cylindrical flux, and equating also the sum of the semi-cylindrical fluxes going to all the
steps in the surface to the plane flux, we eliminate ¢(y,) and find

0 (%0) [0 = [1+2ma(d—yo) [%oyo+ (2¢/%0) In (4o/%0)] 7", (57)

which, introduced in (56), gives v,, as a function of x, and y,. v,, will clearly increase when y,
increases.

Applying now formulae (43) and (44) for the rate of growth R and the distance between
steps y, of the growing pyramid, which will be approximately valid in our problem also,
we obtain

R = DN, Qao (%) [2%0p., (58)

where 2p, = 2ya/kT0(x,) is the dimension of the critical nucleus and o(x,) is given by (57).
For low supersaturations the third term in the bracket in (57) is the important one; then
the rate of growth becomes parabolic. On the contrary, at high supersaturations, the second
term in (57) is the important one, and the rate of growth becomes linear:

R, = DN, Qu/é. (59)
The change-over from parabolic to linear occurs at a supersaturation o, roughly given by
oy ~ yx,/kT6. (60)

For reasonable values of y and §, ¢, ~ 1073, Above ¢, one should observe only the linear law
(59) ; below ¢y, all the rates of growth between (58) and (59) could be expected. As far as
we know there is no experimental evidence for such a critical supersaturation.

On the other hand, we observe frequently (Bunn 1949; Humphreys-Owen 1949) that
the rate of growth is substantially smaller than the linear law (59) would suggest; sometimes
a crystal surface does not grow at all in spite of the fact that it is in contact with supersatura-
tions as large as ¢ ~ 0-1. This could possibly be interpreted as being due to the absence of
dislocations in the surface or to the presence of so many that the mean distance between them
is smaller than 2p,. In this last case, the number of dislocations per sq.cm. would have to
be of the order of 10!2c¢m.~2, which is high. Moreover, in this case, the dislocations would
have to be distributed in a peculiar way, with least density at the centre of each face; for
otherwise the growth, when it did occur, would be most rapid at the corners, i.e. dendritic.
We are more inclined to think that the number of dislocations involved is quite small, and
that they are situated near the middle of the face. The changes in growth rate could be due to
rearrangements of the dislocations or to the effect of impurities adsorbed on the steps. The
required amount of such impurity is very small indeed. For example, if the number of
dislocations persq.cm. is as high as 108, the number of atomic sites on the step-lines connecting
them need not exceed 10~* of all sites in the area.
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EQUILIBRIUM STRUCTURE OF CRYSTAL SURFACES

PART ITI. STEPS AND TWO-DIMENSIONAL NUCLEI
13. Introduction

We begin with an outline of the theory to be developed in later sections. Some of the
statements made in this outline receive their fuller justification later.

It is clear that a crystal will grow only if there are st¢ps of monomolecular height in its
surface, and growth will take place by the advance of these steps forming new molecular
layers. The rate of advance of the steps will depend on their structure when in equilibrium
with the vapour; hence the necessity for studying this structure as a preliminary to the study
of crystal growth.

Frenkel (1945) has recently shown that such steps, when in equilibrium at temperatures
above 0° K, will contain a number of kinks (cf. figure 11), i.e. molecular positions from which
the energy necessary to take a molecule from the crystal to the vapour is equal to the evapora-
tion energy W. This is true for intermolecular forces of a very general character, as has been
shown by Kossel (1927) and Stranski (1928). According to Frenkel, the proportion of
molecular positions in the step occupied by kinks is given by a formula of the type

e—w/kT, (6 1)

where w is the energy necessary for the formation of a kink in the step. Our first purpose in
this part is to study in detail the structure of steps of any crystallographic direction and to
estimate the value of w. The concentration of kinks turns out to be in general considerably
larger than the concentration of adsorbed molecules in the edge of the step. We consider as
a working model a Kossel crystal, a simple cubic structure with first and second nearest
neighbour interactions. When the crystal is in real equilibrium with its vapour, a step in
equilibrium must be in the mean straight but can have any crystallographic direction.

On the other hand, if the vapour is supersaturated, it is known that there is a two-
dimensional nucleus (critical nucleus) which is in unstable equilibrium with the vapour.
Our second purpose in this part is to calculate the shape, the dimensions and the total edge
free energy of the critical nucleus in equilibrium with a given supersaturation at a given
temperature, for the particular case of a (0, 0, 1) surface of a Kossel crystal.

If one assumes that the crystal is perfect, its growth in a supersaturated environment
requires the formation of nuclei of critical size, because it is only when they reach this size
that they are able to grow freely forming a new molecular layer. It can be proved, on thermo-
dynamical grounds, that the number of critical nuclei created persecond must be proportional
to exp (—A,/kT), where A, is half the total edge free energy of a critical nucleus, which will
also be called activation energy for nucleation (Volmer 1939; Becker & Déring 1935). In the
calculation of 4, the previous authors neglected the configurational entropy, which amounts
to supposing that the shape of the critical nucleus is the same as it would be at 7'= 0° K.
Under this assumption, and for the simple case of a (0, 0, 1) surface in a Kossel crystal, the
size of the critical (square) nucleus and the activation energy 4, for nucleation are given by

kT Ina=¢/l, Ay=¢*/kT Ina, (62)
where o is the saturation ratio, defined as the ratio between the actual concentration in the
vapour to the equilibrium value, ¢ the energy of interaction between nearest neighbours and
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{2 the number of molecules in the critical (square) nucleus. Taking account of the entropy
factors, we show that the critical nucleus has essentially the same dimensions given in (62)
buthas rounded corners, which decreases 4, only by a factor of the order of 0-8 in a typical case.
We deduce therefore that the activation energy for nucleation is enormous for the values of «
for which growth is observed («~ 1-01; 4y/kT ~ 3-6 x 103, for the typical value ¢/kT ~ 6),
and consequently the observed growth at low supersaturations cannot be explained on the
basis of a perfect crystal theory.

We believe that the observed rates of growth of crystals can only be explained by recog-
nizing, as has been suggested by Frank (Burton e al. 1949; Frank 1949), that those crystals
which grow are no¢ perfect, and that their lattice imperfections (dislocations) provide steps on
the crystal surface making the two-dimensional nucleation unnecessary. If the distance
between a pair of dislocations producing a step in the surface is such that a critical nucleus
can pass between them the step will grow freely. If that is not the case the step will require
a certain activation energy for growth. Using our preceding results we calculate this
activation energy, and we show that it is small only when the distance between dislocations
is practically equal to the size of the critical nucleus.

In part IV we shall consider the problem of the equilibrium structure of a crystal surface
not containing steps, in order to study whether thermal fluctuations are able to produce
steps in the surface, in the same way that they produce kinks in a step. The answer will
be no, provided the temperature is below a certain critical temperature, which for the more
close-packed surfaces is of the order of or higher than the melting-point. The problem of
the structure of a crystal surface is actually an example of a co-operative phenomenon.

14. Equilibrium structure of a step

By a step on a crystal surface we mean a connected line such that there is a difference of
level equal to an intermolecular spacing between the two sides of the line.

If the crystal lattice contains no dislocations, then there can only be two varieties of step
in the surface; either the step begins and ends on the boundary of the surface or it forms
a closed loop on the surface itself (thus bounding a monomolecular elevation or depression
on the surface). However, if dislocations are present, it is possible that a step can start on a
surface and terminate on a boundary, or it can have both ends in the surface. If a step has
an end in the surface, this end must be a place where a dislocation meets the surface with
a screw component normal to the surface.

For the sake of simplicity we shall consider a crystal in contact with its vapour, but many
of our conclusions will apply for other primary phases; also we shall assume the crystal to
be very large compared with the range of molecular forces involved, that is, we shall speak
of infinite crystals. We only consider, for simplicity, a (0, 0, 1) face of a simple cubic crystal
with forces between molecules of the nearest neighbour or possibly the nearest and next
nearest neighbour type. Finally, we neglect altogether the differences in frequency of
vibration and rotational free energy of the molecules in different positions in the crystal
surface.

If a crystal is then in stable equilibrium with its vapour (the vapour being neither super-
saturated nor under-saturated), then it is fairly clear even at this stage (and we prove this
later) that a step in equilibrium in the crystal surface will have a constant mean direction
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(this direction not necessarily being along a crystallographic axis), and hence under these
conditions no finite closed step can be in equilibrium. The latter will only be in equilibrium
when the vapour is supersaturated or under-saturated. In this case the equilibrium is
unstable. To avoid unnecessary circumlocutions we introduce here the saturation ratio ,
defined as the actual vapour concentration divided by the vapour concentration under
conditions of stable equilibrium with an infinite crystal surface. Summarizing, then, we
expect to find steps of constant mean direction (straight steps) if « = 1 and curved steps if
a==1, the two possibilities being mutually exclusive.

Ficure 10. Step at 7'=0° K. Ficure 11. Step at 77> 0° K.

Ficure 12. Overhangs in a step.

Potential energy considerations show that at 0°K a step will tend to be as straight as
possible. This is shown explicitly in § 14-1 (figure 10). As the temperature is raised, a number
of kinks appear (+, —), separated by certain distances (figure 11); a certain number of
adsorbed molecules (4), and a certain number of vacant step sites (B5) also appear. A certain
number of adsorbed molecules (C) also appear on the crystal surface proper. We shall see that
the concentration of adsorbed molecules and vacant sites in the step is small compared with
that of kinks. We require only the knowledge of the concentration of kinks to form a picture
of the structure of the step. The representation of the step by kinks, even when we admit
kinks of any height, is not capable as it stands of including such a feature as that depicted in
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figure 12, which we call an ‘overhang’; to this extent our treatment will be slightly inaccurate.
However, when the concentration of kinks is small, the concentration of overhangs will be
negligible.

In what follows, our unit of length will always be the intermolecular spacing. We distin-
guish two types of kinks, which we call positive and negative, corresponding to a ‘jump’
and a ‘drop’ respectively at the point in question (figure 11). We use the symbol 7,,(x) to
denote the probability that there is a jump of amount 7 at a point whose co-ordinate is x.
Similarly for n_,(x). We denote by ¢(x) the probability that there is no jump of any kind at
the point x. In the present case there are no geometrical constraints, i.e. at each point in
a step, any of the various possibilities can occur independently of what there is at any of the
other points. Hence the probability of the occurrence of a given configuration is equal to the
product of the probabilities of occurrence of the individual situations which make up
the configuration, and we may write as a normalization condition

1)+ 3 () +n (0} = 1. (63)

We define the local mean direction of a step at a point x by the equation

h(x) = tanf = 21 r{n,(x) —n_ ()} (0<A<1), (64)
where 6 is the smallest angle between the step and the [0, 1] direction. Our problem is now
to evaluate the equilibrium values of ¢(x), n,,(¥) and n_,(x) as a function of the temperature
T, and also of the first and second nearest neighbour interaction energies ¢, and ¢,.

It is possible to prove in a number of ways (see appendix C) that the probabilities » and ¢
must satisfy the thermodynamical relations

8a,(%) = {8 (%)} 757D, (65)
g+(%) g-(x) =1}, (66)
g+ (%) = g4(0) 2™, (67)
where the g represent the relative probabilities
Ger(%) = 1, (%) /9 (%) ; (68)
we write g, for g, ;, and we use the notation
N1, = €xp (—¢,,0/2kT). (69)

We see, from equation (67), that if @ = 1, and therefore the crystal is in thermodynamical
equilibrium with its vapour, all the probabilities are independent of x, and therefore, from
(64), the step will have a constant mean direction 4. On the contrary, if «==1, the step will
be curved; its local mean direction is then a function 4(x) of position in the step.

14-1. Equilibrium structure of a straight step. Let us now consider in more detail the structure
of a straight step. Since there is now no dependence on x, we shall omit the variable from our
notation. From (63), (65) and (66), using the notation (68), we obtain by summing a

geometric series Lot — gL —rin3(2—13)]
g+(1—q)n3

g+ +8-= (70)
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In the same way, for a given mean direction / of the step, using (64), (65) and (66), we obtain
8+ —8&- = hg(1—ntn3) /g + (1 —q) 73]% (71)

where we have also used (70) to eliminate g, +g_.

From equations (66), (70) and (71) we can express ¢, n, and n_ as functions of 7, 7,
and 4. Equations (65) then enable us to find n_, and n_, as functions of the same quantities,
thus completing the solution of our problem. The general expressions are complicated
and cumbersome, so we do not give them ; instead, we consider some particular cases.

At T = 0, we get

g=1—h, n.=h n_=0, n,=0 (r+1),

i.e. the step is as straight as it can be.

Before considering higher temperatures, let us see what typical values should be assigned
to ¢, and ¢,. In our model, the evaporation energy per molecule is W = 3¢, + 6¢4,; assuming
W~ 0-7¢V (iodine for instance) and ¢,/¢; ~ 0-2, we have ¢; ~0-15e¢V and ¢, ~0-03eV.
Thus at temperatures of the order of 300° K, we have 7, ~ 0-05 and 7, ~ 0-6. Accordingly,
at these temperatures, it is reasonable to assume 7, ~ 1, which amounts to neglecting the
effect of second nearest neighbours. Under these conditions the solution to our problem
becomes

g = [T+ —{(1+7})?— (1 —1) (1 =2 F]/(1—9}) (1 —42),)
2¢, = 14+7t—q(1—1m%) A1 —h), (72)
2¢- = 1+7t—q(1—73) (1+A).

For & = 0, that is to say for the (0, 1) step, equations (66), (70) and (71) give

¢= QA=) /(1 +2n—mn3), n =n_=qn. (73)
At low temperatures we get
g—1-2p, n,+n_ =20 = 2exp (—h/2kT). (14)

The expression n, -+n_ now represents the proportion of step sites occupied by kinks from
which the evaporation energy into the vapour is W. Thus, we obtain the same formula as
Frenkel (1945) for the concentration of kinks, the energy of formation of those kinks being
here w = }¢,. This value for w is, of course, equal to the increase in edge energy of the step
by the formation of a kink. Since w is small, we shall have a considerable number of kinks;
in fact, if 7~ 300°K, ¢, ~0-15¢V, we shall have one kink for every ten molecules in the
step. The concentration of molecules diffusing in the edge of the step is much smaller than
that of the kinks, being in fact proportional to 7 which gives one diffusing molecule per
100 molecules in the step, if we use the above values for ¢, and 7.

As the inclination of the step increases (£> 0) with respect to the [0, 1] direction, the total
number of kinks increases, because of the presence of kinks due to geometrical reasons;
actually 7z, increases and n_ decreases in such a way that n, +#_ increases. For  very small
(h<27,), and at low temperatures, one deduces

/ZZ
n,+n_ =2y, I:l +S77_% . (75)
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On the other hand, as we approach the [1, 1] direction (% = 1), the positions in the step
from which the evaporation energy is I/, are no longer the kinks of height 1 (probability 7.,
because of the influence of the second nearest neighbour bonds. Consequently the
number of kinks with evaporation energy W reaches a maximum somewhere near £ = 1,
and decreases again being a minimum for the direction [1,1]. Actually, for the (1,1) step
at low temperatures at which 7, and 7, are small, we obtain

q =Ny =1y =exp(—3y/2kT), n, =1-—2,,.... (76)

Now the proportion of step sites from which the evaporation energy is W is represented by
g-+n,,. We obtain again a formula of Frenkel type with an energy of formation w = }¢,
which is extremely small, much smaller than in the case of the (0,1) step. At higher tem-
peratures, for which 7, ~ 1, we obtain
_l1—n -1 2 _ 1=

9_21_'_77%) n+“4(1 ”l)a n—-“‘(l_l_”%)z”ls"" (77)
It can now be seen why we have gone to the trouble of considering second nearest neighbours;
we have done so in order to obtain the correct behaviour at low temperatures for the
directions near (1, 1). In fact for low temperatures (77) becomes

=1 —1 = — (L)r+l
9=72 NBy=3g N, = 0, Ry, = (?)r ’
independent of temperature.

14-2. Free energy of steps

It is of interest to evaluate the configurational free energy of a straight step. Using
standard methods (S =kIn W, F = U— T, etc., W = number of ways in which kinks can
be arranged in a step) we obtain the following general expression for the edge free energy

per molecule:
F = 3(1+20;) + 34 +£T (Ing +hing,), (78)

where, of course, g and g, are functions of /. This expression is referred to the [0, 1] direction;;
in order to obtain the free energy per unit length of the step itself, we must divide the
expression by (1 A2)%

In the general case the extended form of (78) is exceedingly cumbersome, so we again
consider some particular cases. For the (0, 1) step at low temperatures the formula (78)
gives

Foy = 3(9,+28,) — 2k T, (79)
under the same conditions the corresponding quantity for the (1, 1) step is
By = ¢1+6,—2kT In (1475). (80)

The contribution of the entropy of the kinks to the edge free energy is small for the (0, 1)
step, but for the (1, 1) step it is not negligible. In fact, at temperatures for which g, ~ 1,
formula (80) gives 267 In2 ~ 0-07, or a third of ¢,.

At reasonable temperatures the free energy is always smaller for the (0, 1) step than for
any other, so we might conclude that steps other than the (0, 1) steps are not in real equili-
brium, and that there must be a tendency for these steps to change into (0, 1) steps. If the
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steps are infinite, this conclusion would be erroneous. Actually, every step is in equilibrium
with the same vapour pressure. Moreover, although the (0,1) step has the smallest free
energy, there is no tendency for other steps to change their orientation, because even the
smallest rotation of step requires the transport of an infinite amount of material.

Frenkel (1945) has treated the kinetical problem of the transformation of any step into
a (0,1) step, assuming that only the latter are present in equilibrium, on account of the
higher energy of the former. He obtains in this way a time of relaxation independent of the
length of the step. This result is clearly incorrect, because the processes allowing a finite
step to change its orientation occur only at the corners; consequently the time required for

this rotation increases with the length of the step.

15. The two-dimensional nucleus: activation energy for nucleation
We have seen in § 14 that if the saturation ratio « is unity then the equilibrium steps are
in the mean straight. If a==1 we shall find that the equilibrium step forms a closed loop;
if >1 the step bounds a finite incomplete layer of molecules on the surface, in which case
we speak of a two-dimensional nucleus, and if a<(1 the step bounds a finite hole in an

infinite incomplete layer.
The most obvious method for calculating the shape of an equilibrium nucleus would be

to use the free-energy formulae and Wulff’s theorem.* Although the use of Wulff’s theorem
is simple in principle, the details prove to be cumbersome. However, the results gleaned in
§ 14 enable us to find the shape directly.

We know that in general (see appendix C)

8+ (%) = 8:(0) ™,
and to complete the explicit determination of g as a function of x it is necessary only to
evaluate g(0). So far we have not specified an origin for x; let us now choose it to be the point
where the local mean direction of the step is (0, 1). Then, by symmetry,

(67)

8.(%) =g (—2).
Hence, using (66), we obtain g.(0) = g_(0) =7,
so that with (67) we get g (x) = ™. (81)
Invoking once more the normalization condition (63) we obtain
1+ (7,75)° =1 73 (o +-a7) (82)

x) = s
1) = TR — ) (1 —7d) ()
using (65) and (81). Itis now clear that our information on the structure of the step at every
point x is complete.

15:1. The shape of the equilibrium nucleus

The local mean direction #£(x), and therefore the shape of a step in equilibrium with an
external phase of saturation ratio «, is clearly obtained from (4), using (21) and (22). In
Cartesian co-ordinates, the shape of the step is represented by the equation

y = [ by,

* In appendix D we offer a new proof of a generalized Wulff’s theorem, which will be used later in § 16.
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where the origin is at a place where the local mean direction is (0,1) (see figure 13). Inte-
grating, we find

yIne =In{(1—7yn5e") (1—n73e™)/(1—n.73)% —$1In [H(x) H(—2){H(0)}], (83)
where H(x) is given by
H(x) = {1 —nin3(2—n3)} o+ (1—75) (@ +1).
The second term in (23) can be shown to be always small and negative; when 7, =1 it is

zZero.
The value of y in (83) becomes infinite when x = -+ }/', where [’ is given by

ET Ino = (¢,+26,) /0 (a>1). (84)

Thus (83) represents a finger-shaped figure (figure 13). It is interesting to note that /'
coincides with the dimensions of the equilibrium or critical nucleus when a square shape is
assumed [§13, formula (62)] and ¢,<¢;.

Ll

Ficure 13. Step in equilibrium with supersaturated vapour (¢,/kT ~6).

If in (83) we replace « by its expression as a function of I’ from (84), we see that y/l’ is
a function only of x/I’; hence the shape of the step is independent of «. The value of « fixes
the size of the figure. The shape is, of course, dependent on the temperature; at low tem-
peratures the ‘corners’ become sharper and the ‘edges’ straighter. At temperatures for
which 7, ~ 1 the expression for the shape can be written in the form
y/l! = (kT|$,) In {1 — [sinh (¢, x/2kTT") [sinh (¢,/4kT)]%}. (85)
The figure we have obtained is not, of course, entirely correct, in the sense that we should
have obtained a closed figure. The reason is the neglect of ‘overhangs’ (figure 12), which is
not a good approximation when the inclination of the step is much greater than 3w with
respect to the (0, 1) direction taken as x-axis. Nevertheless, knowledge of the step shape in
a range i enables us to state the complete shape, because of the square symmetry of the
(1,0, 0) face of the simple cubic lattice. The diameter / of the nucleus obtained in this way
(see figure 13) turns out to be given by

KT Ina = (g +24,— 4k T,) 1, (86)

to the first order in 5,. The expression in parentheses is seen to be 2F;, (equation 79), Fy;
being the edge free energy per unit length of the (0, 1) step. This is the result that we should
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expect from a correct application of the Gibbs-Thomson formula (see appendix D), and it

shows that the shape we have calculated is a good approximation. The difference between

[ given by (86) and [/’ given by (84) is practically negligible for ordinary temperatures.
The radius of curvature p of the nucleus at the corners when 7, ~ 1, is easily shown to be

given by pll =—J(2) (kT/$,) tanh? (¢,/2kT). (87)

The rounding of the corners at high temperatures is considerable. For the melting-point
T, for which £T,,/¢, ~ 0-6, the nucleus would have practically a circular shape. According
o (87), the nucleus would become square at 7"= 0° K. If second nearest ncighbours are
considered the nucleus would become an octagon.

15-2. Activation energy for two-dimensional nucleation

It is easy to show how the activation energy for nucleation 4, is related to the total edge
free energy Iy of the critical nucleus. Let n be the number of molecules contained in a
nucleus, then n will be variable and will have the value n, for the critical nucleus itself. Let us
suppose that the shape of the nucleus does not change appreciably for values of 7 around #,.
Then the increase in free energy by the formation of a nucleus containing z molecules will

be A = —nkT Ina+ i,
where £ is assumed to be a constant given by
Iy = find.
Now 4 has to be a maximum for n = n,, because the critical nucleus is in unstable
equilibrium with the vapour of saturation ratio a. This condition fixes the value of
ny = (f/2kT Ina)?,
and the maximum of 4 is equal to
Ay =nkT Ina = 3F,. (88)

The probability for the formation of a critical nucleus is then proportional to exp (—4,/kT),

and A, is called the activation energy for two-dimensional nucleation.
In the case of our (0, 0, 1) face in a simple cubic crystal we know that by an application
of the Gibbs-Thomson formula (see appendix D) the dimension / of the two-dimensional

critical nucleus is given by kT Ina — 2F, I (86)
= Zlg1/t,

where Fj, is the edge free energy per molecular position in the direction [0, 1]. The activation
energy for two-dimensional nucleation can then be written in the form

My (2F)?
AO_F/chnoc' (89)
Assuming that the critical nucleus is a square of size [ and putting /; ~ £¢,, we deduce the
Becker-Doring expression 4y = $JkT Ina. (62)

Formula (89) differs from (62) essentially by the factor n,//?, the ratio of the actual area of the
nucleus to that of the square circumscribed on it. For the typical value ¢,/kT ~ 6 we obtain
graphically from figure 13 that ny/l>~ 0-86. This shows that the actual activation for
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two-dimensional nucleation is reduced with respect to (62) only by a small factor, which is
not sufficient to account for the observed growth rate at low supersaturations.

16. Sieps produced by dislocations

As a final application of the generalized Wulff theorem (see appendix D) we evaluate the
activation energy for nucleation in the presence of screw dislocations.

A real crystal is supposed not to have a perfect lattice, but to contain a number of lattice
imperfections in the form of dislocations, and Frank (1949) has shown that when dislocations
having a screw component normal to the surface terminate in the crystal surface, they
ensure the permanent existence of steps in the surface during growth. Every dislocation is

a>1

~~
’
\
-

ST

\\ //
Ficure 14. Step between two screw dislocations P Frcure 15. Equilibrium positions of a step
and @ terminating in the surface. between two dislocations P and Q: PAQ

stable, PBQ unstable.

the origin of a step, which finishes usually in another dislocation of different sign. Therefore
we must study the behaviour of a step between two screw dislocations of opposite sign.
A picture of the surface in this case is shown in figure 14. We shall suppose for definiteness
that the line joining the dislocations is in the [0, 1] direction, and we let the distance between
the dislocations be ¢ (figure 15). In real equilibrium (x = 1) the step will remain straight
between the two dislocations (figure 14), having the structure of a piece of step (0, 1). If
a>1 the step will become curved (figure 14), and its shape, seen from above, under equili-
brium conditions, is the same as part of the shape of a ‘free’ nucleus passing through the
dislocations P, @ (figure 15). (Our calculations show in fact (appendix C) that the kink
density at a point in a step depends only on conditions in the immediate neighbourhood of
this point.) The diameter of this free nucleus will be /, given by (89) or approximately by
(62). If [>>d, there are two possible equilibrium positions: P4 which is stable, and PBQ
which is unstable. For growth we require the transition PAQ - PB(), and the activation
energy A, for this is half the edge free energy of the piece PBQ minus half the edge free
energy of the piece PAQ. This quantity is easily evaluated graphically. To find the free
energy of a piece of boundary we have merely to evaluate the area of the sector contained by
44-2

— 68 —



334 W. K. BURTON AND OTHERS ON

the piece and the lines joining its ends to the centre of the nucleus, as a function of d// (see
appendix D). This we have done for ¢,/AT ~ 6, and figure 16 shows the ratio of 4, to the
activation energy 4, for ordinary nucleation. The curve has a vertical tangent at / = d,
which means that we have to go to values of [ very close to d in order to obtain a reasonably
small value for the activation energy. Of course if /<<d, the activation energy is zero. The
dotted curve in figure 16 is obtained if we assume that the free equilibrium nucleus is
a square.

Hence we conclude that given a certain saturation ratio «, and therefore a value / for the
dimensions of the critical nucleus, all the steps connecting dislocations distant d<</ will not
move at all, and those connecting dislocations distant d>/ will be able to move freely without

requiring an activation energy.

djl
Ficure 16. Activation energy 4, for the growth of a step between
two dislocations a distance d apart.

PArT IV. STRUCTURE OF A CRYSTAL SURFACE AS A CO-OPERATIVE PHENOMENON
17. Introduction

Following an idea put forward by Frenkel (1945), we discussed in part ITI the structure of
the edge of an incomplete molecular layer on a crystal surface, which we call a ‘step’. We
found that such an edge contains in equilibrium at temperature 7"a large number of ‘kinks’.
The results of this part enable us to describe the structure at a temperature 7" of surfaces of
high index, which contain steps even at the absolute zero of temperature. Frenkel appears
also to have concluded that a surface of low index, and thus flat at the absolute zero, would
acquire at a finite temperature a definite number of such steps. This we believe to be incorrect.
We shall show in this part that the problem of the structure of a surface is different from that
of a step, being actually a problem in co-operative phenomena. The result of our investiga-
tions is that a surface of low index will remain flat, and not acquire any steps, below a certain
transition temperature; above this temperature the surface becomes essentially rough,
a large number of steps appearing.

The problem of the structure of a step is actually one-dimensional; we were dealing with
situations spread over a line. As we pointed out in §14, we could assign independent
probabilities for the existence of given features (kinks) at each point in the step, i.e. the range
of possible states at each point is independent of the states at all the other points. In the
two-dimensional problem which concerns us, this is no longer the case. This can be seen in

the following way.
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We are interested in the difference of levels between neighbouring molecules. If two
neighbouring molecules differ in level by r molecular spacings, we speak of a jump of magni-
tude 7. It is clear that the number of places where jumps can occur is greater than the
number of molecules in the surface; hence the probability of having a jump between two
given molecules cannot be independent of the jumps occurring in all the other positions.
Figure 17 shows a (0, 0, 1) surface of a simple cubic crystal. At 7> 0 the surface will contain
a certain number of jumps or differences of levels. The levels of the molecules can of course
be assigned independently ; however, the jumps cannot. For suppose we trace out a closed
path ABCDEFA in the surface, then the magnitude of the jump at any point on the path
must be uniquely fixed by the magnitudes of the jumps at the remaining points on the path.

Ficure 17

We shall consider the surface structure problem as solved when the surface potential
energy at equilibrium is known as a function of temperature. For instance, if we consider
a simple cubic model with nearest neighbour interactions ¢, then a completely flat (0,0, 1)
surface has a surface potential energy 4¢ per molecule. If, however, the surface contains
a jump of magnitude 7, then there will be an extra contribution to the surface potential
energy of amount §rg. In general, we shall define the surface roughness s as (U—U,)|U,,
where U, is the surface potential energy per molecule of the flat surface (7" = 0) and U that
of the actual surface; s is equal to the average number of bonds per molecule parallel to the
surface. ' ,

In the case of a (0,0, 1) surface in a simple cubic crystal, mentioned above, the problem
of finding U— U, which we call the configurational potential energy, is seen to be equivalent
to finding the same quantity for a square lattice of units each capable of taking a range x
of states, such that the energy of interaction between two neighbouring units is a certain
function u(u, ') of their states. In the simple case considered we have

ulpff) =3¢ | p—p' | (mp' =0, +1,4£2,...). (90)

Our problem, then, is an example of the so-called standard problem of co-operative
phenomena in crystal lattices; given a lattice composed of identical units, each capable of
a number of states 4, such that the energy of interaction between neighbouring units 7, ; is
a function of y; and g;, what is the partition function per unit of the lattice?

18. Co-operative phenomena in crystal lattices

It seems to be characteristic of co-operative problems that the thermodynamical functions
are non-analytic functions of the temperature; they thus possess discontinuities or infinities
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in themselves or in their derivatives. The temperature at which these singularities occur are
called transition temperatures. But this result is by no means generally proved. Itis conceivable
that in certain cases there will be a critical region where some of the thermodynamical
functions change very rapidly without having a singularity.

So far, only particular cases of the general co-operative problem in lattices have
been completely solved: those in which g is capable of two values only, and the lattice
is two-dimensional. The partition function is completely known only in the case of
a rectangular lattice with equal or different interactions in the two crystallographic
directions (Onsager 1944 ; Onsager & Kaufmann 1946). In this case a single singularity is
known to exist and its position is also known. Under the assumption that a single transition
temperature exists for any symmetrical (equal interaction in all directions) two-
dimensional lattice, its value is known (Wannier 1945), again with the limitation that xis
two-valued.

For our purpose, only the potential energy U is required. There are, in fact, several
approximate methods for finding U, the best known of which is that due to Bethe (1935).
These methods have been applied extensively (Wannier 1943) to the Ising model of a two-
dimensional ferromagnet. However, the rigorous solution for a rectangular lattice, due to
Onsager (1944, 1946), is qualitatively different from all the approximate solutions. In the
approximate methods both the potential energy and the specific heat can be discontinuous
functions of temperature; the correct treatment shows that both are continuous, but the
specific heat has a logarithmic infinity at a temperature some 10 %, below that at which
Bethe’s method predicted a discontinuity. The reasons for this discrepancy have been
discussed by Wannier (1945). These results have thrown considerable doubt on the
predictions of approximate methods, especially when they predict a latent heat, i.e. that the
potential energy is also discontinuous. Broadly speaking, it is characteristic of these approxi-
mations that the calculated quantities are evaluated more accurately on the low-temperature
side of the transition temperature than on the high side.

The exact Onsager solution was applied to the case of a two-dimensional ferromagnet;
the same solution could be applied with little change to an adsorbed monolayer on a perfectly
flat crystal surface. It seems not unreasonable to suppose that the behaviour of a monolayer
will be similar to that of the crystal surface itself. Such an interpretation means that we
suppose that the molecules in the crystal surface are capable of two levels only. This means
that if we include adsorbed molecules or nuclei in the model, holes are excluded. The two-
level model of a crystal surface is undoubtedly an over-simplification, but it has the advantage
that we shall be able to use the results of Onsager’s treatment for several types of symmetrical
and unsymmetrical surface lattices (§19). The generalization of Onsager’s method to more
than two levels seems to be very difficult; hence, in order to study how the transition
temperature changes with the number of levels, we generalize Bethe’s method to a many

level problem in § 20.
19. Two-level model of a crystal surface

In appendix E we shall giveashort mathematical account of the interpretation of Onsager’s
solution from the point of view of our problem. In this section we shall state the results and

discuss their physical consequences.
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In the case of a two-dimensional lattice with z nearest neighbours and equal interaction
energy ¢ in all directions (symmetrical case), Wannier (1945) has shown that, assuming
there is a transition temperature 7, it will be given by the general formula

gdH, =n|z, H, = ¢|2kT,, (91)
where gd is the Gudermannian function defined by
gdx=2tan"!¢*—inr=2tan"! (tanh {x).
In the simplest case of a square lattice (z = 4), (91) becomes
sinh H, = 1,
kT,

or 7, =e¢He = [(2)—1~ 041, = (2Incotin)~! ~ 0-57. (92)

¢

1

50'5-

|
0 1
Ul 7
Ficure 18. The surface roughness s of a square surface lattice as a function of 4 for a two-level model.
O, Onsager’s solution; B, Bethe’s solution; I, assuming no geometrical constraints.

In this case Onsager and Onsager & Kaufmann have found the exact partition function of
the lattice for all temperatures. The configurational potential energy per molecule U— U
or the surface roughness s = 2(U—U)/¢ (see §17) is found to be given by the formula

s—1—} (1 +§k21<,) coth H, (93)
im
where K, = K(k,) — f [1—A2sin?w]~* do
0
is the complete elliptic integral of the first kind, and
2sinh H
— 2 — !
ky=2tanh’H—1, k, = coshZH *

A graph of s against 7 = exp (— H) = exp (—¢/2kT) is given in figure 18. The curve possesses
a vertical tangent at the transition temperature given by (92). For low temperatures or
small 5, (93) becomes s = dgt. (94)
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This result shows that at low temperatures the jumps existing in the surface are due essentially
to adsorbed molecules; in fact, the proportion of molecular positions on the surface occupied
by adsorbed molecules is * = exp (—24/kT') ; as every adsorbed molecule has four horizontal
bonds, the number of these bonds per molecule due to adsorbed molecules turns out to be
equal to (94). In an actual crystal surface there will also be vacant surface sites in number
equal to that of adsorbed molecules, therefore s should be 87%; the reason why (94) is only
half of that is, clearly, the assumption of a two-level model. In fact there will also be on the
crystal surface nuclei of adsorbed molecules and holes consisting of more than one vacant
surface site, but their concentration will be very small at low temperatures. Provided that is
so, they can be considered as independent entities, and their concentration is proportional
to 7% for nuclei (or holes) of two adsorbed molecules (or vacant surface sites) and to higher
powers of  for greater nuclei (or holes). As the temperature approaches the transition point,
the concentration of these nuclei becomes larger and they cannot be considered as inde-
pendent entities; the problem must then be considered as a co-operative phenomenon.

It is interesting to compare (93) with the result that we would have obtained if we had
assumed no geometrical constraints in the surface; it is easy to see that under these conditions

s would have been given by o
s = 29/(1+7), (95)
which is represented by the dotted curve in figure 18.

In the case of a triangular lattice (z = 6, close-packed plane) (91) becomes

exp 2H, = 3,
or 7, =1//3~058, kT /¢ = (In3)~1~0-91. (96)

This value for the transition temperature was obtained directly by Wannier & Onsager
by an elegant method (Wannier 1945) assuming that a single transition temperature
exists.

Examples of square surface lattices are the (1,0, 0) face both in simple cubic and face-
centred cubic lattices. An example of a triangular surface lattice is the (1,1, 1) in the face-
centred cubiclattice. In all these cases the nearest neighbour interactionsin thesurfaceitselfare
the same as the nearest neighbour interactions inside the crystal. The transition temperatures
(92) or (96) for these surfaces are very high and seem to be of the same order of magnitude
or higher than the melting-point 7}, of the crystal. In fact, for the solid state of the rare
gases for which a nearest neighbour interaction model can be considered as a reasonable
approximation, we find from the experimental values £7},/¢ ~ 0-7. We deduce that these
surfaces, if the crystal is perfect, must remain essentially flat for all temperatures below
the melting-point, apart, of course, from the presence of adsorbed molecules and vacant
surface sites. -

Another interesting case is that of surfaces for which the nearest neighbour interactions
in the surface itself are not only first but also second nearest neighbour bonds, as, for instance,
(1,1, 0) both for simple cubic and face-centred cubic lattices. Then the surface lattice is
rectangular and the interactions are ¢, (first nearest neighbour bond) in one direction and ¢,
(second nearest neighbour bond) in the other direction. The exact partition function for this
lattice has also been given by Onsager (1944). He has shown that the potential energy (or our
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surface roughness) follows a curve similar to figure 18, with a vertical tangent at a transition
temperature given by

sinh H, sinh Hy, = 1, H,, = ¢,/2kT, H, = §,/2kT.
This formula can be written in the form

2{;? In coth 4%: = %Z (97)

Figure 19 gives £7;/¢, as a function of the ratio ¢,/¢, between bond energies. We see that
for a given ¢, the transition temperature decreases rather slowly as ¢, decreases; it is only for
ratios of the order ¢,/@; ~ 0-1 that 7, is smaller than (92) by a factor §. This is probably the
case for homopolar crystals. Thus the transition temperature for these surfaces should be of
the order of one-half of the melting-point. It could be interpreted as a surface melting of

second nearest neighbour bonds.

ch/¢1

J |
0 05 1

P2l

Ficure 19. Transition temperature for a rectangular unsymmetrical lattice as
a function of the ratio between the bond energies in both directions.

Finally, in the case of surfaces containing only second nearest neighbour bonds, as, for
instance, (1, 1,1) for simple cubic crystals, the transition temperature (7) is much lower; it
is of the order of ¢,/¢, times the melting-point. At ordinary temperatures these surfaces
would therefore be above their transition temperature.

The configurational surface free energy is, in all cases, very small below and at the transi-
tion temperature. Above this temperature it decreases roughly linearly with rise of tem-
perature, the slope being —kIn 2 approximately. Therefore the differences in surface free
energy between the different faces of a crystal will decrease more and more as the temperature
rises and the critical temperatures of the high index surfaces are surpassed, since high index
faces have higher surface energies but lower transition temperatures.

The existence of a transition temperature, when it is below the melting-point, should have
an observable effect on the adsorption properties of the surface, which clearly depends on
the surface roughness. Actually the presence of adsorbable substance will change the
equilibrium structure of the surface itself, and its transition temperature. We hope to treat
this point in detail elsewhere. Meanwhile, a possible experimental method of testing the
existence of a transition temperature would be to prepare, say, a metal crystal with one of
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its less dense-packed surfaces exposed, anneal at various temperatures in vacuo, quench and
test the adsorption properties of the surface. A sharp change in the latter would be expected
when the annealing temperature crosses the transition temperature of the surface.

Similar considerations would apply to the influence of the catalytic properties of the surface
of some solids on the kinetics of chemical reactions between adsorbed substances, in the case s
when the catalytic activity is restricted to ‘active’ points on the surface. Frenkel (1945)
suggested that these ‘active’ points should be identified with the presence of jumps on the
surface, assuming that the adsorption of the reacting molecules in the edge of the steps
decreases the activation energy for their chemical reaction.

On the other hand, the existence of a transition temperature will not have any influence
on the kinetics of growth of the crystal surface. It would if the crystal were perfect. Below
the transition temperature the only mechanism of growth would be a two-dimensional
nucleation, which we know (part III) is-always a very slow process at low supersaturations.
Above the transition temperature the growth will be proportional to the supersaturation.
Actually the fact that real crystals are imperfect guarantees the presence of the steps required
to explain the observed growth atlow supersaturations and below the transition temperature;
Frank (1949) has shown that, during growth, a dislocation or group of dislocations termi-
nating in the surface sends out closed loops of step in such a way that at any instant the
surface is covered by a very high density of steps, practically independently of the number of
dislocations present (provided there is at least one). Therefore, even if we observe the growth
of a surface for which the critical temperature is below the melting-point, there would hardly
be any difference between the rate of growth below and above the critical temperature.

20. Many-level model: Bethe’s approximation

The two-level model of a crystal surface is clearly an over-simplification. We expect that
with a many-level model, which corresponds to the actual crystal surface, the transition
temperature should be lowered. In order to study this point we extend in this section Bethe’s
method to our many-level problem. In this method we assume that in a given region,
arbitrarily chosen, the probabilities in which we are interested are independent; we then
insert correction factors to take account of the geometrical constraints, and attempt to
evaluate them by the requirement of self-consistency.

We shall limit ourselves, for simplicity, to the study of the structure of a (0, 0, 1) surface
of a simple cubic crystal. Figure 20 shows a group of five molecules in the crystal surface,
whose levels are i, j, £, [, m (at T'= 0 we would have i =j =4k ={=m=0). Let the
probability for this configuration be p(i;j, £, I, m), p not being normalized. We assume that

plisg, ky m) = glizil+limkl +li-ti+li=mig( Y o(K) e(l) e(m), 7 = exp (_%T), (98)

where ¢ is as usual the nearest neighbour interaction. The factors containing # represent the
Boltzmann factors, and the functions ¢ are the correction factors which take into account
the influence of geometrical constraints of the outside region on the molecules considered.
The factors ¢(x) will be less than unity unless x = 0; in this case we take ¢(0) = 1. The level
zero corresponds to Bethe’s ‘right atom’, the other levels to different kinds of ‘wrong atoms’.

By symmetry, ¢(x) = ¢(—x).
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The total probability p(x), for the central molecule to be at the level x, whatever the values
ofj, k, I, m, is

PE) = 3 plessikdm) = (S, (99)
where S) = Ste(i), (100)

and the summations are carried out over all possible levels. Clearly f(x) = f(—x). Following
Bethe, the self-consistency condition is that the probability p(x) for the central molecule to
be at the level x must be equal to that for one of the molecules in the outer shell to be also at
this level. Therefore p(x) can also be written as

px) = 3 plisxk,Lm) = e(x) Za O, (101)
where we have used (98) and (100). Hence from (99) and (101) we obtain
JH) =) 220, S@) =) (102)

Ficure 20

The correction factors ¢(x) have to be determined from the equations (100) and (102).
Now if we divide (102) by f3(0), use (100), and introduce the functions g(x) = [ f(x)/f(0)]5,
the equations (102) transform into the system of linear equations

(%) 2" le(@) = e(x) Zn'*1g(d),
which have the only solution
6(x) = g(*) = [f(x) [f(0)]*. (103)
This form of the conditions that ¢(x) must satisfy is very convenient for numerical calculations.

The potential energy U, and therefore the surface roughness s = 2U/g, can also be written
in a general form. In fact, the energy corresponding to the configuration of figure 20 is

gl li—k[+]i=l[+|im-m]}
and therefore the potential energy per molecule U of the surface will be

V=355 S Pk L m) ’

(104)

where the summations are carried out over all values of ¢, j, £, [, m. Using (98) and (100)
the potential energy or the surface roughness can be written in the form

5= 115,30, (105)

452
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where the use of the sign of partial differentiation is to indicate that ¢ is to be treated as
constant during the differentiation. Once the ¢(x) are known from equations (103) the
surface roughness factor is determined from (105).

20-1. Two-level problem
Let us first consider, as an introduction, the two-level case, which is the problem initially

considered by Bethe (1935). In this case, from (100) (¢ = 0,1),
f(O) =1+, f(l) =6,+7; 6(0) =1, 6(1) =€
and formula (103) becomes Bethe’s equation

_ €1+77)3
(———Hem , (106)

1=

€ 05 -

Ficure 21. Bethe’s factors ¢ for the two, three, and five levels.

giving ¢, as a function of 5. Figure 21 gives ¢; (curve 2) as a function of 5. ¢, is smaller than
1 only for values of y smaller than 0-5. Above 7 = 0-5 the only solution of (106) is ¢, = 1.
The temperature corresponding to 7 = 0-5 has been interpreted as the transition temperature

of the corresponding co-operative phenomenon:
7,=05, kT /¢ =(2In2)"1~0-72. (107)

This value is higher than the value £7;/¢ ~ 0-57 (92) given by the correct treatment of
Onsager. On the other hand, the fact that ¢, = 1 above 7 = 0-5 cannot be interpreted from
a physical point of view, and shows only that the method is not correct. Actually ¢, = 1
means, from the point of view of our problem, that the geometrical constraints have dis-
appeared above the transition temperature, and this is obviously impossible. According
to the definition of the factors ¢, they must be smaller than 1 at all temperatures.

The surface roughness is now given by

_ depy 1
5= Ttef Tey’ (108)

— 77 —



THE GROWTH OF CRYSTALS 343

For low temperatures, s = 45%, the same expression as is given by Onsager’s treatment.
Above 5 = 0-5, s is given by formula (95) corresponding to the hypothesis of independency
of the probabilities or ¢, = 1. The expression (108) has been represented in figure 18, for
comparison with Onsager’s result.

20-2. Three-level problem

The simplest many-level problem which corresponds to the structure of a crystal surface
is the three-level problem. In this case, using (100) (¢ = 1,0, —1), '

SO) =142e7, f(1) =f(—1) =7+e(1+77);  €(0) =1, &(1) =¢(—1) =6,

ol 5
3
S
1
i
|
1
| | |
0 1 2
T, KT
¢ ¢

Ficure 22. The surface roughness s for a three-level and five-level problem,
as a function of £T/¢.

The general formula (103) now gives the equation

b= [P eT

e (109)

for the calculation of ¢, as a function of 7. The result is represented in figure 21 (curve 3).
In this case ¢; = 1 is not a solution of (109) for any finite temperature, as we should expect
on physical grounds. On the other hand, ¢, has no singularity allowing the definition of a
transition temperature. To decide where this transition temperature is we must wait till s
is known.

The value of s is easily calculated from (105):

_ 8n¢, 147
ST Ir2e 126" (110)

The result is represented in figure 22 as a function of £ T/¢ ; the curve has a point of inflexion

at a temperature given by
7, =045, KkT,/$~ 0-63. (111)
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This temperature can be interpreted as the transition temperature of the three-level problem.
Itis substantially lower than the transition temperature corresponding to the two-level Bethe
problem, but still higher than Onsager’s value. The derivative of s with respect to 7" (which
would correspond to the specific heat in our problem) would have a maximum at this
transition temperature, but not a singularity.
At low temperatures (110) becomes
s = 8rt,

which represents the jumps due to the presence in the surface of adsorbed molecules and
vacant surface sites, which were not allowed in a two-level model. At high temperatures s
becomes now larger than 1 (in fact, its maximum value for 7 = 1 is 1-8). The reason for that
is again that we have now the possibility of jumps of height 2 intermolecular distances, and
therefore the number of bonds parallel to the surface per molecule (equal to 5) can now be
greater than 1.

20-3. Many-level problem
It is interesting to see how the surface roughness behaves with increasing number of levels.
In the case of five levels, one obtains the equations '

:(zzf(lwﬂ)el—krz(l-+7z2)ez)3 6:(772+77(1+r;2)61+(1+774)62)3 (112)
! 1+ 2p¢, + 2%, > 2 1+ 27¢, + 2%,

for the calculation of ¢, = ¢(1) = ¢(—1) and ¢, = ¢(2) = ¢(—2). The surface roughness s is
given by
_ 81 6, +17(63+265) + (1 +39%) €165+ 293 (113)
T 12684268 1+ 276, +29%, ’

$

The values of ¢, and ¢, are represented in figure 21 as functions of 7 and those of s in figure 22
as functions of £7/¢. The curve s has again a point of inflexion, defining the transition
temperature at a value of £7,/¢ which cannot be distinguished from (111). The inclination
of the tangent increases and hence the height of the maximum for the derivative of s. We
notice that the difference in behaviour between three and five levels is rather small from the
point of view of the location of the transition temperature. The reason for that is that the new
parameters ¢ which we introduce to represent the new levels are very small in the neighbour-
hood of the critical point. ,

The calculations can be carried on to any number of levels. In the vicinity of the transition
temperature there is practically no further change. Also the parameters ¢ do not become 1,
at any rate for temperatures for which 7 < 0-8, in spite of the fact that for an infinite number
of levels ¢(x) =1 is a solution of equations (100) and (102).

The change in the value of the transition temperature, according to Bethe’s method,
occurs therefore at the passage from two to three levels. Although we also expect to have
a decrease in the correct transition temperature, when the number of levels is increased, we
do not know whether this decrease will be as substantial as it is in Bethe’s approximation,
owing to the anomalous behaviour of the two-level problem in this approximation.
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APPENDICES
ApPENDIX A. INFLUENCE OF THE MEAN DISTANCE X, BETWEEN KINKS ON
THE RATE OF ADVANCE OF STEPS
Al. Single step

We suppose the kinks to be regularly distributed on the step at distances x, from each other
(figure 23). Let us suppose D, is independent of direction in the surface; we have to solve

equation (14) or eV =, ¥ =0—0, (A1)

with the boundary condition ¥ = 0 for y = 4- c0. We suppose also that there is a current in
the edge of the step, governed by the diffusion constant D,, which is large enough for the
current passing directly from the surface to the kinks to be neglected. Since ¥ must be
periodic in x, with period x,, the required solution of (A1) is

U(x,y) =of % c e cosk,x; k, = 2mnlxy, 2= x724K2 (A2)

n=0
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Ficure 23. Step (y=0) with kinks at a distance %, from each other.

The minus sign corresponds to ¥ >0, and the plus sign to y < 0; the coeflicients ¢, have to be
determined. The current going into one kink (x = 0 for instance) will be equal to the current

J = Dinso(049y) 40
going from the surface to the edge integrated between — §x, and }x,. The velocity of the step
will then be the result of the current going into all the kinks, and turns out to be
Vo = 20x,v €xp (— WIkT) fic,, (A3)
which is the general expression (19) given in §4. We have now to calculate the factor ¢,.
In the edge of the step we shall have a supersaturation ¢, and an expression ¢, = ¢—o,,
which will be a function of x. In general, ¥(x,0) = f§,¥,(x), where £, <1 is a retarding

factor similar to (17). If the interchange of molecules between the edge and its immediate
neighbourhood is rapid, #; = 1. Hence

B, (x) =af 20%0051%"- (A4)
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Near the kinks (¥ = 0 for instance) we shall have ¢,(0) = f,0, where /5, is another retarding
factor corresponding to the interchange between edge and kink. Putting f = f,f,, we have
the condition ©
>, =1 (As)
n=0

The current in the edge passing through the point 4 (figure 23), whose co-ordinate is #,
is given by ©
J‘e = —De(dne/dx) = _De”eo‘fﬁz z cnaninknxﬂ (AG)

n=0 .

where (A4) has been used. On the other hand, this current must be equal to that going from
the surface to the edge between x and 4x,, that is to say

o ©
2D [ (09109),-0 v = 2D [a(brosgns—x)fx,— 3 (6, k) sinkx], (A7)
x n=1
where sgn x is 1 for x>0, —1 for x<<0 and 0 for x = 0. Equating (A 6) and (A7) we obtain
the coeflicients ¢,(n>0) as functions of ¢;:
Caf0o = (4be[n?) [1+(2¢[n) (1+6[n%))] 71, (A8)
with the abbreviations
b = x,/2nx,, ¢ = xga/2nx2, x2 = D,nyal/D.n,p,. (A9)

From (A5) and (A8) we obtain
1/ = 1+ 4b i (n2[1+ (2¢/n) (1 62/n2)H )1 (A10)

The series in (A10) can be approximated to by an integral

5000001 [

0

which can be evaluated using the transformation tan § = bx. The final result for ¢, is

T L BB H (51 ) s ) (A11)

0
where  fi(%), u,) = 2(x}—1)Ftan~! {u,, (7 — 1)}/ (%, —u,,)},
Saltgy w,) = (1—x3) 7 In {(u,,(1 4 (1 —23)") +205) /(s (1 — (1 = 63)*) +x,)},
Uy = b[{1+ (1462, x; = c/b+ (/B2 +1)>1, x5 =—c/b+(c?[b2+1)F <1,
For x,->00, we obtain the result for widely separated kinks; it is easy to see that ¢, is then
proportional to 1/x,, or to the number of kinks per cm.

The method used to calculate the current going into the kinks is correct, provided the
current via the edge is important or x,>a. In the limiting case when x, ~ a the result of this
calculation should be the same as if the current via the edge were neglected altogether. In
§ 4 we have seen that x, is of the order of ¢; under these conditions, and assuming x,>a and
x,>a, one obtains from (A9) that ¢>1 and ¢/b> 1; then, the rather complicated expression

(A11) reduces to 1/co = 1-+2b1In {4c/(1+ (1+52)1)}, (A12)

which is the formula (21) of § 4.
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A2. Parallel sequence of steps
We suppose the steps and kinks are disposed as in figure 24, the kinks forming a rectangular
lattice. Let the distance between kinks be x, and that between steps y,. Between steps the

same continuity equation (A1) holds. Again we have periodicity in the x-direction, hence

in the in
interval —Yyo<y<tye, —ixo<x<}x,

we have the solution V(% y) = off 3’: ;. coshilyy

“ nmCOSknx, (Alg)

where £, and [, have the same significance as in (A 2). The velocity of every step will be the
result of the current going into every kink, equal to the current going from the surface to the
step in the range x,. The velocity turns out to be

Vo = 20x,ve""/KT tanh (y,/2x,) fco, (A14)
which is the general formula (24) given in §5. To calculate ¢, we have again the condition
2 6=1 (A15)

n=0

as before. To evaluate all the ¢,(n>0) as functions of ¢;, we use the same method asin §A1,
and from (A 15) we deduce for ¢, the rather complicated expression

1/¢y = 1+4bctanh (yo/2x,) i {n?[1+4(2¢/n) (14 6%/n?)} tanh ((n/2¢) (1 +6%/n2)}) ]}, (A16)

where b and ¢ are given by (A9) and
€ = xo/2mY,. (A17)

e
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Ficure 24. Sequence of steps distant y, from each other with kinks distant x,.

In the limiting case when x, ~ @, and therefore ¢> 1, the series in (A16) can be approxi-
mately evaluated, replacing the tanh x by x/(1+4x). The approximated result is

1/cy = 14 2btanh (y,/2x,) [In (4¢/(1+ (1 +52)1)) 4 (2¢/b) tan~1 5], (A18)
which is the formula (25) given in §5.

ArpENDIX B. THE MUTUAL INFLUENGE OF A PAIR OF GROWTH SPIRALS

We now reconsider, in more detail, the interaction of the growth spirals of a pair of
dislocations (like or unlike) whose separation is at least a moderate multiple of p,. We have
seen (§9-1) that their resultant activity will equal that of one dislocation except in so far as
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influences transmitted along the step from the point of meeting modify the rate of rotation
of the separate spirals. To examine this effect we first consider a simpler case.

A circular expanding step, whose position is defined by » = r,(#), is helped on over a small
portion of its length, e.g. by meeting another small closed loop of step (asmall island nucleus).
Re-entrant portions of the curve fill in rapidly, so that we then have r = r,(¢) + (0, ¢), where
@ is the angular polar co-ordinate and ¢ the time. We suppose f small compared with r,, and
0r/06 = ' small enough for its square to be neglected in expressions for curvature (35) and
normal velocity (36):

1/p = 2+ 2r2—1r") (P42~ 1r—1" 12 ~ 11, — 0%]0s2,
v = (0r/0t) r(r24r'2) "t ~ Jr[0t = Or,|0¢t+df]0¢.
Here s is the arc distance 0. By equation (34) we have then
01y [0t+0f]0t = v, — Vo |1, + e p, 03052
Subtracting the corresponding equation obtained when fis zero, we have

I 2

o = Veleggz

This is simply the diffusion equation, with an effective diffusivity v,,p,. Whatever the initial
form of f, provided it is confined to a small portion of the circumference and disregarding the
closed nature of the curve (as is right, since we are going to apply the result to a spiral instead
of a circle), its solution tends rapidly to the form

J=A(4mp v, 1) exp (—5*/4p,v,1),
for whichf fds has the constant value 4. Thus the growth increment remains constant in

area but gradually spreads out along the step.
This result should be approximately valid for deformations of the spiral also, except close

to the centre, where 7’ is no longer negligible. We apply it, then, to a growth spiral which,
once in every turn, meets another based on a dislocation a distance [ away. Each time this
happens the resulting concave region of the growth front fills up rapidly, making an area of
increment which we estimate roughly as (4 —) /2/8 from the difference in area between two
circular quadrants and a rectangle. This occurs w/27 times a second at a distance, measured
along the step, approximately /2/16p, from the dislocation. These growth increments now
diffuse along the step, but at the same time the spiral continues to rotate, so that while the
increment spreads, its centre recedes from the dislocation, the arc distance being expressible

approximately as s = p,(I/4p,+0t)>.
Near the centre of the spiral the concept of an area diffusing along a line fails; the growth
increment which diffuses into the centre is used up in extending the step line faster than would

occur spontaneously.
Supposing the diffusion law continued to hold as far as the centre of the spiral and on

some fictitious line beyond it, the value of f at this point resulting from one meeting of the
growth fronts at a time ¢ = 0 would be approximately

Ju={(4—7) PI16(mp,000)") exp [ —p, (149, +0)*40.,1].
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This is zero for small or large ¢, and has a maximum very nearly at the maximum of the
exponential factor which occurs at ¢ = [/12wp,. Inserting this value of {, and at the same time
writing o = €v,,/2p,, where ¢ is a factor representing the increase of rate of rotation over that
of an unperturbed single spiral, we have

Ja,max, = [(4—m)[16] (6el/mp,)* exp [— (3¢) (U/3p.)*]-
We may alternatively focus attention on the area of incremental growth which would have
diffused past the centre, on the same assumptions. This is

Fy = [(4—m) 2J16] erfc [(f4p,+t)? (40, t]p,) ],
where erfc (x) is the complementary error function 1 —erf(x). As a function of time this
has its maximum value at ¢ = //12wp,, and is then

Fy wmax. = [(4—m) B2[16] erfc [($e)* (/3p,)']-

Consideration of either of these expressions, f; ... OF F; 4., suffices to show that the
influence transmitted into the centre is quite negligible if / much exceeds 3p,.

For variations of [/p, the first of these functions is a maximum precisely, the second very
nearly, when (/¢!/3p,) = 1. The corresponding maximum values are 0-234p, and 0-155¢~% p2.
We may crudely estimate the order of magnitude of the amount of extra rotation produced
by such an increment by dividing by 2mp, in the first case or 7p? in the second, obtaining 0-037
or 0:049¢~* of a turn. This occurs once in every turn, i.e. € ~1-04 or 1-05. This result is not
directly valuable, for the maxima occur at a separation too small for the validity of approxi-
mations used in the treatment; but it does show that at greater separations where the
approximations are reasonably valid (say />4mp,) the interaction is quite negligible.

The calculation affirms the surmise that when p, is steadily reduced below the critical
value }/ above which the activity of an unlike pair of dislocations is zero, the activity first
rises above that of a single dislocation before settling down to equality with it; but it leaves
much doubt as to the actual magnitude of the maximum excess. It is probably a few units
per cent, and if it later turns out that importance attaches to the actual value, a step-by-step
trajectory calculation must be carried out.

APPENDIX C. PROOF OF CERTAIN FORMULAE IN THE STATISTICS OF KINKS

To prove formulae (65), (66) and (67) in the text, we consider particular processes
(figures 25, 26, 27, 28) and we apply the principle of detailed balancing.
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Ficure 27 Ficure 28
46-2
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Let us first consider the process shown in figure 25. The molecule denoted by a square is
the one which moves. The positions in the shaded regions are supposed to remain the same
during the process. In this case the energies of the two configurations are the same, so the
probabilities for their occurrence are equal. Hence

”+r(x) q(x+ 1) ”+(x+ 2) = ”+(r~1)(x) ”+2(x"" l) Q(x"'" 2) . (C 1)
Here we have written #, for n,,. Later we write g, for g,,. It is convenient to introduce a
unction defined by 8url) = 1 (3) - (c2)

Then (A1) can be written
g-H'(x) g+(x—l—2) =g+(r—1)<x) g+2(x+1). (03)
For the process of figure 26, we need to supply an energy ¢, in going from the left-hand to the

right-hand diagram. Hence
Lo 1) = g, (x) g.(x+2) 73, (C4)

where we have again used (C2) and also the abbreviation
N, = CXP(“¢1,2/2kT)‘ (C5)
Substituting the value (C4) of g, ,(x+1) in (C3) we obtain
81r(%) = {g: ()} 3",
as is easily shown by induction on 7. Formula (C 6) is formula (65) of the text.
We now need an equation relating neighbouring positions. Comparing (C4) and (C6)

(r = 2) we obtain, immediately,
{g.(0)P=g,(x—1) g, (x+1). (CG7)
From the process illustrated by figure 27 we obtain
go(x 1)1} = g, (%) g-(x+1) g, (x +2),
and using the property (C7) we obtain

(Ce)

o , g+ (%) g_(x) =1}, (G8)
which is formula (66) in the text.
The general solution of the functional equation (C7) is easily proved to be
g+ (%) = g,(0) e, (CG9)

where g,(0) and ¢ are arbitrary constants. We now investigate the dependence of the
constant ¢ in (C9) on the supersaturation, or more specifically the saturation ratio « defined

by the equation N = aN, = a(pyn,)* (C10)
Here N is the occupation probability for an adsorbed molecule on the surface, and
Ny = exp{—2(¢,+¢,) [k T}

is clearly the value of N when a = 1. Since we are speaking of equilibrium, N is independent
of position in the surface. From the process represented by figure 28 we obtain

N =g, (%) g_(x+1)7in3, (C11)
and combining this result with (C8), (C9) and (C10) we obtain
ax=e°,
and therefore (A9) becomes g.(x) = g,.(0) 0%, (G12)

which is equation (67) given in the text.
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AppENDIX D. WULFF’S THEOREM

‘In a crystal at equilibrium, the distances of the faces from the centre of the crystal are
proportional to their surface free energies per unit area.’

A great deal has been written on the general form of this theorem, and von Laue (1943)
has given a critical review of the subject. There is no really satisfactory proof of the three-
dimensional Wulff theorem even now. The proof for the two-dimensional case given here is
believed to have merits not to be found in any earlier proof.

The problem is to find the relation between the shape of the two-dimensional equilibrium
nucleus, and the polar diagram of the free energy of a boundary element as a function of its
orientation. The shape is fixed by the condition of minimum total free energy for a given
area of nucleus. Let (r,$) be the polar co-ordinates (figure 29) of a point 7 of the crystal
boundary S, and let (x, %) be the corresponding Cartesian co-ordinates. Construct a tangent
to S at 7, and let OM be a perpendicular from the origin to the tangent (length p). Let
f(6) be the edge free energy per unit length of the element of boundary at 7. The line
element for the boundary in parametric form is

ds = (#2+2)} di, (D1)

where the dot denotes differentiation with respect to the parameter z. We now choose ¢
as the parameter. Then the total edge free energy F' and area 7, (number of molecules) of
our nucleus are given by

F= [ fio) s, m =g [(i—vi) o, (D2)

respectively. From figure 29, p=xcosf+ysind. (D3)

Let us find the locus of M as T goes over the whole of the curve S. This will give the ‘pedal’
of S, which is determined by (D 8) and the equation obtained from it by partial differentiation
with respect to §. Conversely, if the pedal is known, i.e. p is given as a function of ¢, then the
(%, y) equation of S can be obtained from the equations

x=pcosf—psind,
. (D4)
y = psinf+pcosb.
Using these expressions we can write (D2) in the form
. 1 .
F=[(p+)fd0, n=3[(o+5)pav. (D5)

The problem now is to minimize F subject to the condition of 7, being constant. Intro-
ducing the Lagrange multiplier A, the appropriate Euler equation giving the minimum

condition is
0Q d (0Q\  d? (0Q\
5 —alap) e (ap) = ©
where Q=3(p+h) p—Ap+h) S
These two equations reduce to p+b=Af+F), (D)

and the solution of this differential equation is

p(0) = Csin (6—F) +A/(0),
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where C'and ff are arbitrary constants. Now the first term on the right possesses the period 27;
so that if we choose the origin in such a way that the crystal possesses some rotational
symmetry with respect to it (centre of the crystal), we see that C = 0. Hence

p(0) = Af(0), (D7)

which shows that up to a constant factor the polar diagram of the edge free energy is the
pedal of the equilibrium shape of the crystal.

The foregoing theorem, which is a generalization of Wulfl’s theorem, enables us to study
the properties of the critical nucleus in a very general way. First we deduce from (D5),
(D6) and (D7) the total edge free energy F, of our nucleus:

Fy = 2njA. (D8)

The constant A can be determined in the following way. Assuming that the shape of the
nucleus does not change in the neighbourhood of the equilibrium dimensions, it was shown
in §15-2 (formula 88) that the total edge free energy of the critical nucleus is given by

Fy=2nkT Ina. (D9)

4 \
\? Y

Ficure 29

Therefore, from (D8) and (D9), 1/A =kT Ina,
and (D7) becomes kT Ina = f(0)/p(0). (D10)

This equation represents not only a generalization of Wulff’s theorem, but also a generaliza-
tion of the Gibbs-Thomson formula—in two dimensions of course. Knowing f(f), equation
(D10) gives p(#), and hence the shape of the critical nucleus is derived by the following
geometrical construction. Draw a radius vector from the origin to the curve of p(f) and
construct a perpendicular to the radius vector at the point of intersection with the curve.
Then the envelope of these perpendiculars, when the radius vector describes a complete
revolution, defines the shape of the critical nucleus. Naturally, the curve of p(6) will be
closed if the free energy per unit length is single-valued. We emphasize here that 0 is generally
not the same as ¢, the polar angle in the shape diagram (figure 29).

For the particular points of the step for which the tangent to the shape is normal to the
radius vector, § = ¢ and p(f) = r(¢), and equation (D10) becomes

kT Ina =f(9)[r(9), (D11)
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showing that the distance from the centre to one of these particular points is proportional to
the edge free energy per unit length at this point, which is the ordinary form of Wulff’s
theorem. If for 7 is 1ndependent of ¢ then (D11) becomes the Gibbs—Thomson equation in
two dimensions.

It is possible to give a simple expression for the radius of curvature of the nucleus at a
point whose polar angle is ¢ in terms of the values of f(f) and f(f) at the corresponding point
in the edge free-energy diagram. The result is

0)+f(0)}kT Ina, (D12)

the unit of length again being the intermolecular spacing.

The solution (D7) has been obtained on the assumption that $ and its pedal possess
continuously turning tangents. When there are sharp corners in 5, the solution also
applies for all pieces of § possessing continuously turning tangents. However, it may turn
out that more than one free-energy diagram corresponds to a given S. To illustrate this, let
us consider the polygonal equilibrium shape shown in figure 30, where § is the boundary
of the crystal and O is its centre.
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/// ——_p"
/
T
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|
|
|
|
L
1 g
e
L-"
]
Ficure 30

It is easily seen geometrically that if the free-energy diagram is that figure P obtained by
finding the pedal of S (a number of circular arcs, if § is polygonal), then any curve P’ lying
entirely outside P, but coinciding with P at the cusps C, will give the same S, namely that
given by P. If, however, the free-energy diagram lies entirely inside P, but coincides with P
at the cusps C, then we obtain a shape for the crystal $” (different from §) which possesses
neither sharp corners nor straight edges, and there is a one-to-one correspondence between
$” and the free-energy diagram, so that given §’ the free-energy diagram is determined
uniquely and vice versa. This is the case in the particular model which we have been
considering in part III. In the intermediate cases when the free-energy diagram P” lies
partly within and partly without P, then the corresponding crystal shape " will have sharp
corners with or without straight segments in the boundary, depending on the actual form P”.

At T = 0 we expect most crystals to be polygonal (or polyhedral, in three dimensions).
The question arises: Are the corners rounded when 77> 0, or can it happen that the equili-
brium form remains polyhedral? If the potential energy were like P’ in figure 30, and if the
entropy correction were insufficient to bring the free-energy diagram within P, then sharp
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corners would remain. This seems to be the case for ionic crystals. Shuttleworth (1949) has
calculated the potential energies per unit area of the (1, 1, 0) and (1, 0, 0) faces of a numberof
ionic crystals and finds that their ratio is always greater than 2. Thus it would require
temperatures probably above the melting-point to give rounded edges. In the case of metals
near their melting-point, it is probable that the free-energy diagram will be within P,
therefore the edges will become rounded.

ApPENDIX E. AN OUTLINE OF THE MATRIX METHOD OF TREATING
CO-OPERATIVE PROBLEMS

Here we give a brief account of the mathematics leading to (93). The general methods are
due to Montroll (1941), Kramers & Wannier (1941), Onsager (1944), Onsager & Kaufmann
(1946) and Wannier (1945). We consider a chain of identical units, each capable of a range
of states 4. Let the chain be m+1 units long, so that there are m bonds connecting them
(figure 31). Let the state of the rth unit be g,. If the units are in given fixed states, each bond
contributes #(g,.,, #,) to the total energy of the chain, so that the total energy of the chain is

6 = WHuyrs fn) H Ul Hpy) oo Uty 1) (E1)
Hence the partition function for the chain is

Jr = S exp (~6/kT)

= ‘uz ﬂz "‘ﬂz qu: V(lum+13/um) V(Ium’lum-l) V(qunul)a (EQ)
where Viw 1) = exp{—u(p 1) [KT}, (E3)

and the summations in (E2) are carried out over all possible values of all the #’s. Since (E2)
is in the form of a matrix product, (E3) can be regarded as a matrix, # being a row index,

and g a column index.

Ficure 31
If we define
q)m+1(/um+1) :/; qu Z V(lum-i»l’/‘m) V(lumhum—l) e V(luZ’nul)? (E4)
m M-y #q
we see from (B2) that (4 ) = 3 Vitsrs i) Do), (Es)
Pm

®_ ., may be called the partial partition function relative to the state y,,,;, and we see that
m+1 Y p P m+1

(E5) gives the effect on the partial partition function of a chain by the addition of another
unit. The complete partition function f,,., is of course given by

fm+l = E CI)m+l(/um+l)' (E6)

P

If the chain is very long, the ratios between the various components of @, , ; will be the same
as those between the corresponding components of @, so that in the limit as m becomes

very large we obtain
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Hence from (E6) Sms1 = Y (E8)

so that A must be the partition function per unit. Combining (E5), (E6) and (E7) we are
confronted by the following eigenvalue problem for A:

% Vg ') U (') = A (n), (E9)
which can be written in the contracted notation
(V,¥) (1) = Ay (u). (E10)

By (E3) the elements of V are all positive, and by (E4) the components of ¥ (i.e. the
components of ®) are all positive. This enables us to conclude by theorems due to Frobenius
(1908, 1909) that A is the largest eigenvalue of V. The results used here are that a matrix with
positive elements has a largest eigenvalue which is simple and greater in absolute magnitude
than any other eigenvalue, and that, moreover, the eigenvector belonging to it has
components of only one sign. We may choose this sign to be positive. This eigenvector is the
only one with this property.

E1. The one-dimensional, two-level case
As a preliminary to the solution of our two-dimensional, two-level problem, we first find
the V for the corresponding one-dimensional problem. In this problem the interaction
energy between two neighbouring molecules is zero if they have the same level and 14, if
not. We designate one of the possible levels by # = +1 and the other by 4 = —1. The ‘inter-
action’ energy between two neighbours can then be put in the form

o bl
u(,u,,u) - 2 2 ’ (Ell)
which gives 0 if = 4’ and }¢, otherwise. Hence from (E 3)
Viw ') = exp FH(m' —1)}, (E12)
where H=¢,[2kT. (E18)

The operator ¥ in (E12) has the following effect on a general function (which we may
interpret, if we please, as the partial partition function):

W 9) () = ¥ ()+e ) (—p), (E14)

using the contracted notation. If we define an operator C by the equation
(G9) (W) =¥ (=n)> (E15)
we can write V as V=1+4¢*#C, (E1e6)
using (E14). From (E15) =1, (E17)

so C has the eigenvalues =1, showing that V has the eigenvalues 1+¢~#. The upper sign
gives the largest eigenvalue, and hence the partition function per molecule.
In order to use these results in the treatment of the two-dimensional problem, we write ¥

in the form V — Adife, (E18)
which is possible in view of (E17), since we have, using (E17) and (E18),
V = A(cosh 3H -+ Csinh 1H).
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Thus, from (E16), A2 =1—¢"?" = 2¢ Hsinh H, (E19)
coth 1H = e#. (E20)
Hence V = (2¢#sinh H)}exp (LHC), (E21)

where H is given by (E 20).

E2. The two-dimensional, two-level case: rectangular lattice
In order to treat the two-dimensional case we consider 7 parallel chains of the same type
as before. We shall build up the two-dimensional lattice in two steps by the addition of
complete columns of molecules. Thus our ‘unit’ is the column. In the first stage we include
only the ‘horizontal’ bonds (left-hand, figure 32), and in the second stage we insert the
‘vertical’ bonds (right-hand, figure 32). We associate with the last element in each chain
(thejth chain) the variable x, which can take the values + 1. A complete set of values assigned

| | | |

o O, i @ e O s S s Y, e )

[ | B
FIGURE 32

to the n variables describes a configuration (x) = (4, ...,#,) of the last column, which
constitutes our unit in the sense of figure 31. Thus the operator which describes the addition

of a new column with the horizontal bonds only is

Vi = (2¢~#sinh H)"n exp (LHB) (E22)
from (E21), where B=3 C, (E23)
j=1

and the individual operators C; have the effect
(Cja %) (/ula cens s --~a/‘n) = %(/115 ey —Hjs '“n“n)' (E 24)

We now wish to find the operator which represents the insertion of the vertical interactions,
as in the right-hand figure (figure 32). The total energy corresponding to the inclusion of
the vertical bonds will be

n—1 1 —u:u;
u(ﬂl: :ﬂn) = Z %Z(—'/gﬁ']'ﬂ)’ <E25)
j=1

where ¢, is the strength of the vertical bond when it is not zero. We assume for generality
that ¢, and ¢, are not necessarily equal. The effect of the interaction is to multiply the
general term in the partial partition function, represented by one of the 2" vector com-
ponents ¥ (uy, ..., 4,) by the appropriate factor

exp{_u(/ul’ °)ﬂn)/kT}
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The corresponding operator is represented by a diagonal matrix. It can be constructed from
the simple operators ), ..., S, which multiply ¢ by the sign of its first, ..., nth argument as
follows:

(Sb 7/’) (:ula ""/‘p nun) = /‘jw(/‘la -"uuj’ '“)ﬂn): (EQG)
n—1
4= zlsjsm, (E27)
j=
V, = exp{—}(n—1) H'}exp (}H'A), (E28)
where H' = ¢,/2kT.

Hence the operator associated with our problem is
V =V,V, = exp (—4nH) exp{—4(n—1) H'} (2sinh H)exp (}H'A) exp (3HB). (E29)
The largest eigenvalue of Vis then the partition function per column of the lattice, and its
nth root is the partition function per molecule. N
Onsager (1944) has shown that the largest eigenvalue A,, of exp (H'A4) exp (HB) is given
by '
2Ind,, = y(2n/n) +y(4nfn) +...+y(2m) +c, (E30)
where |¢|<H' and

cosh y(w) = cosh 2H’ cosh 2H—sinh 2H’ sinh 2H cos w. (E31)

This leads to the conclusion that, in our case, the partition function per molecule A is given

by : .

Ind = —FJKT = }In (2sinh H) —}(H-+ H') + 5 | 7(0) o, (E32)
0

where coshy(w) = cosh H' cosh H—sinh H'sinh H cos w (E33)

when 7> co. This result is exact, the effect of ¢ disappearing by division with n and the
summation converging to a definite integral.
In the special case of quadratic symmetry, H = H’, and these results reduce to

cosh y(0) = cosh Hcoth H—cosw, (E34)
since it follows from (E20) that
sinh Hsinh H = cosh H tanh H = cosh Htanh H = 1 (E35)
and oA L [T g1y~ Hsinz) o (E 36)
2coshH 2m), .
where k, = (2sinh H)/cosh? H. (E37)

We cannot reduce (E36) any further, but the potential energy per molecule U can be
given in terms of the tabulated functions. We have

U==52 (inn), (E38)

which yields § = 2Ujp =~ ().
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From (E36), (E37) and (E 38) we finally obtain

y 1 2
S=1-3 (1 +;r/s21<1) coth H, (E39)

im
where Bik—1, K —K(k)= f (1—K2sin? )~ do, (E40)
0

the latter integral being the complete elliptic integral of the first kind; formula (E39) is
the formula (93) in the text.
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SCATTERING OF ATOMS BY SOLID SURFACES. I

M. CABRERA*Y, V. CELLI*, F. 0. GOODMAN** and R. MANSON*
University of Virginia, Charlorresville, Virginia 22903, U.5.A.

Received | May 1969

A guantum mechanical theory of the scattering of atoms by solid surfaces is presented.
The theory is applied to a detailed discussion of elastic scattering (diffraction) processes,
and the extension to inelastic scattering (phonon exchange) processes is discussed briefly.
A great advantage of the theory is that scattering intensities of any size are easily handled;
the moduli of the scattering matrix elements are not restricted to be small. I the results
are expanded to lowest order in these moduli, then the “first order distorted wave Born
approximation™ is recovered. An example of the results obtained is that the intensity of
the specularly scattered beam is by no means always larger than other diffracted intensities;
this result is in agreement with experiments, and is a decided improvement over the usual
first order treatments.

1. Introduction

The scattering of atoms by solid surfaces is by no means well understood,
either experimentally or theoretically. If a sufficiently high level of under-
standing of this scattering could be reached, there is no doubt that atom-
surface scattering could form a very useful tool indeed for studies of the
properties of the single surface atomic layer of a solid. This is because, under
normal conditions, incident atoms do not penetrate substantially beyond the
first surface layer of a solid. These remarks are particularly true in view of
the advent of controllable nearly-monoenergetic atomic beams!-4). As an
example, such studies could be used to investigate surface phonon spectra
of solids®). Low energy electron diffraction, while an exceedingly useful tool
in its own right, does not yield much information concerning the single
surface layer, because even electrons of quite low energy penetrate many
solid surface layers.

For experiments of this nature to be useful, it is essential that a sufficiently
good theory be available to interpret the results. It is clear that the basis of
any complete theory of atom-surface scattering must be a quantum me-
chanical theory of inelastic scattering. However, the classical mechanical

* Department of Physics.

t On leave at the Escuela de Fisica y Matematicas, Instituto Politecnico, Unidad
Profesional de Zacatenco, Mexico 14, D.F., Mexico.
** Department of Aerospace Engineering and Engineering Physies.
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theory®-9) is in a considerably better state than is the quantum theory1%.11),
This situation is understandable because the classical theory can deal
relatively easily, and perhaps correctly, with those large atom-surface energy
and momentum transfers which are relevant to much recent research; ex-
amples are the drag forces on artificial earth-satellites and the efficiency of
cryopumps. In quantum language, these transfers are results of *many-
phonon™ processes, which are not at all well understood. However, even
one-phonon processes have not been adequately dealt with, although some
theoretical progress has been made!%.11), Perhaps the most remarkable
statement which can be made in this context is that even zero-phonon pro-
cesses (that is completely elastic diffraction processes) do not yet have an
adequate theoretical interpretation,

Conventional quantum atom-surface elastic scattering theory, as used,
for example, by Lennard-Jones and his coworkers!®), is based on a first
order distorted wave Born approximation. That this approach is inadequate
for a useful description of experimental elastic scattering data is shown by
the following remarks. This first order approximation is not valid if the total
non-specular flux is large; that is, it is valid only if the specular beam con-
tains considerably more flux than do all the other beams together. However,
recent experimental data, for example those of Fisher and his coworkers?),
show that the specular beam does not always contain the largest flux. Indeed,
at least for not too glancing an incidence, the specular flux is usually less
than the flux of even a single diffracted beam; in fact, the specular beam
occasionally seems to vanish completely, even though first-order diffracted
beams are at the same time readily visible.

The authors® view is that, before an adequate quantum theory of inelastic
atom-surface scattering can be developed, an adequate elastic theory must
be developed. Then, hopefully, many-phonon processes may be incorporated
into the theory in a natural manner, starting perhaps with one-phonon
processes, Eventually, it is hoped that the results of the classical theory may
bé!-obtained, by means of a limiting procedure, from the many-phonon
quantum theory. The object of this paper is to present a new theory of
elastic scattering which, it is hoped, will form the basis for the future work
described above. The extension to inelastic scattering is discussed briefly,

2, Development of notation

The instantaneous potential energy of interaction of an atom (called the
*“gas atom") with a solid is denoted by V(r, ¥) where r is the position of the
gas atom and u represents the displacements of all the solid atoms, The
value of ¥ (r,u) averaged over the thermal motions of the solid atoms is
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denoted by v(r), which is called the “thermally-averaged potential energy
function™; this is written as follows:

v(r) =V (r, u)). (2.1)

It is the function v(r) rather than ¥ (r, u) which is important in our elastic
scattering theory: V(r,u) becomes important in the inelastic scattering
theory (see, for example, section 7).

Where k is the incident wave-vector, M is the mass, and ¥ (r) is the wave-
function of the gas atom, the Schrodinger equation is

(V2 + k* = 2Mu(r)/i*) ¥ (r) = 0. (2.2)

The z-direction is chosen as the outward normal to the surface, and R is
defined as the two-dimensional position-vector (x, y) of the gas atom parallel
to the surface; that is,

r=(x,yz2)=(R, z). (2.3)

The solid surface is assumed perfect in the usual sense; that is, the surface
atoms are assumed to form a perfect, two-dimensional, infinite, periodic
array. Incident atoms are assumed unable to penetrate beyond this surface
layer under normal conditions. These assumptions result in a two-dimen-
sional reciprocal lattice, each vector of which is parallel to the surface; the
reciprocal lattice vectors are denoted by G, G'.

We define

vg(z)=L* f p(r)e ' Rd’R, (2.4)
surfase

where I? = surface area: the inverse of (2.4) is
v(r) = %‘ ve(z) e F. (2.5)

The convention is introduced that sums over reciprocal lattice vectors G are
over all G, including G=0, unless otherwise indicated. The wave-function
¥ (r) may be expanded as follows:

¥(r)=Y Ye(z) "™ O E, (2.6)
&

where K is the component (k,, k,) of k parallel to the surface:
k = (k,, k,, k)= (K, k). 2.7
For future reference, we note that
k2 =k* - K2, (2.8)

It is observed from the above definitions that a three-dimensional vector
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is denoted by a lower case letter, for example k. The corresponding two-
dimensional vector, parallel to the surface, is denoted by the corresponding
capital letter, for example K ; the z-component, perpendicular to the surface,
is denoted by a subscript z, for example k.. This notation is made explicit
in (2.7). The only exception to this notation is the vector r, the z-component
of which is denoted simply by z; see (2.3). A reciprocal lattice vector, for
example @, has no three-dimensional counterpart in this theory.
Substitution of (2.5) and (2.6) into (2.2) gives

ay 2M ..
z(d_zzf"‘kéz I.PIG'_"_’;E Dﬁ_ﬁ- {FG-)EGR=0, {2-9}
G : 7
where kg, is defined by analogy with (2.8):
ki, =k* — (K + G)*. (2.10)

Thus we note from (2.8) and (2.10) that k_ and k,, are identical.
Each term of the outer summation in (2.9) vanishes separately:

3j—2-+:c= L T e (2.11
dzZ Gz ﬁ_] ] [ ﬁz Vg_g &' . )
GRG

The interpretation of vy(z) follows from (2.4) with G=0; that is, vy(z) is the
thermally-averaged potential energy function, v(r), averaged over the di-
rections x and y parallel to the surface . The potential vy(z) is associated with
a complete set, ¢,(z), of eigenstates. Greek subscripts o, f# stand for both
states of negative energy and states of positive energy; negative-energy states
are denoted by subscripts m, n and positive-energy states by subscript g. The
Schrédinger equation defining the ¢,(z) is

. .
((%M’—i:ﬁ—ifuu(ﬂ) $.(2)=0, 2.12)
where
«’=q° if a=g, O (213)
and
wl=—ki if a=n. (2.13b)

With these definitions, the eigenvalue, E,, of the energy of the state « is
E, = F*a*[2M , (2.14)

for both negative-energy states (£,<0) and positive-energy states (£, 20).
Mormalization of any state is by means of “‘box normalization™, the cubic
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box having side L, where L—co:

L
lim J' |¢.(2))* dz = 1. (2.15)
L= i)
Hence, the positive-energy states may be called “continuum states”, and the
negative-energy states “bound states'”. The number of bound states is de-
noted by B.

It is convenient to choose the ¢, to be real. For g sufficiently small, the
potential vy(z) gives rise to total reflection and the asymptotic forms of the
¢,(|z] = o) are:

¢u(lzl=0) =0, ¢ (z+—0)=0, (2.16a)
and
d,(z »00) = 2L * cos(gz + £,), (2.16b)

where £, is a (non-arbitrary) phase. '

The energy of a bound state is E,, but the rofal energy of an atom in the
state is larger than E, by an amount equal to the Kinetic energy associated
with its motion parallel to the surface. This total energy is denoted by E,g,
where

E.=E, + *(K + G)*[2M. (2.17)
This energy need not be equal to the incident energy, denoted by E:
E = Bk 2M, ' (2.18)

of the atom because the atom is in the bound state only temporarily. On
the other hand, the total energy of the atom in a final diffracted state is
equal to E. The term “diffracted state” is understood to include the specular
state.

The following addition to the notation is made: reciprocal lattice vectors
associated with final diffracted states may be denoted by F, F'; that is,
G, G’ stand for any reciprocal lattice vectors, whereas F, F' stand only for
those linking the initial state to final diffracted states, The zero reciprocal
lattice vector, which links the initial state to the specular state, is included
as one of the F, As with G, sums over F are over all F, including F=0,
unless otherwise indicated explicitly. We note that F, F' may be associated
with bound states as well as with diffracted states, although energy cannot
then be conserved in the bound states.

The final energy of an atom in a diffracted state, F, is equal to its incident
energy, E. The component of the final wave-vector of this atom parallel to
the surface is (K+ F), and it follows from (2.10) and (2.18) that k,, may be
interpreted as the magnitude of the component normal to the surface.
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Therefore, if, for a particular G, we obtain kZ,=0 from (2.10), this G is
associated with a diffracted state and F=G; if, on the other hand, k2,<0,
this G is not associated with a diffracted state and there is no F equal to G.
Combining this result with (2.8) and (2.10), we obtain the condition for a
diffracted state:

ki, =ki—-F*—-2K-F>0, (2.19)

To simplify the notation slightly, we note that 4 in (2.16b) may stand for
kg., and that the following definitions may be made without ambiguity:

dr=d, Lr=E, et if g=1kg. (2.20)
For example, &, stands for §, where g=k, =k,..
3, Derivation of the scattering equations

3.1. GENERAL FORMALISM

¥s is expanded in terms of the ¢, as follows:

wl:=£cﬂ-:¢r {3”
Substituting (3.1) into (2.11), we obtain
Z ‘-'-::-s{kf:: - '12] .= (EMJ’P) GEG Z €6'a UG-G Pa- (3.2)

Multiplying both sides of (3.2) by ¢ (=¢,) and integrating over z in the
usual manner, we obiain

caa(ka: = @®) = 2MIK?) ¥ ¥ coy(Blvg-gl @), (3.3)
i G'aG f§
where the matrix element is defined by
L
(Blvgl @) = lim J‘ &g (2) vg(z) d,(2) dz. (3.4)
L=ay
—4L

Eq. (3.3) determines ¢g, uniquely except where ez =kg_, when the ambiguity
is resolved by demanding that W(r) describe an incoming plane wave of
wave-vector k and outgoing scattered waves. We obtain

Cgs eXP (= i&g) = 8, 0 Og,0 + (2MI?) (kg, — o +ig) " (G|t O k,), (3.5)

where £>0 and we ultimately take the limit as e—0, and where (G a|r| 0 k,)
is a r-matrix13), defined by

(G |1] 0 k.) exp(i&,) = G;G ; cey(«lvg-c B). (3.6
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Substitution of (3.5) into (3.1) yields the following formula for the ¥g:

o 2M (Gt 0 k;) 4,
¥eexp(—ido) = do dg.0 + i mﬂ’

(3.7

where the equation for the t-matrix is obtained by substituting for ¢g. 4 in
(3.6) from (3.5):

(G alt] 0 k) = (alvgl k.) (1 — 6a,n3+2;?: Z leu.-,--s—l ) (G ﬂ]!]ﬂk:}.
GG B

(ké‘: - JB! + i'E]

(3.8)
Let us consider the summation over continuum states in (3.7):

5 =) (Gal0k) 0,

(3.9)
q

It is shown in Appendix A that the following results may be considered as
exact:

ki, <0: 8,(z—w)=0, (3.10a)
k3. >0: S, (z>0)=— (i}2kg,) (F kg, 11] 0 k) exp[i(ke,z + &),
(3.10b)

where F is used instead of G to emphasize that kZ,>0 implies that G=F
is associated with a final diffracted state; see (2.19). It follows that ¥ (z— o),
which is the asymptotic form as z—co of the diffracted beam F, is given
essentially by the r-matrix, defined by (3.6) and (3.8).

3.2, FURTHER DEVELOPMENT OF NOTATION

We now introduce dimensionless quantities, in terms of which our results
may be conveniently expressed. These quantities are written in terms of two
parameters, an inverse-length parameter, denoted by a, and an energy para-
meter, denoted by D. For example, these two parameters could be (and will
be later) Morse interaction potential parameters!d). Keeping, where con-
venient, to the notation of Lennard-Jones and his coworkers12), the follow-
ing definitions are made:

Hg = kg,la, po =kfa, etc., (3.11)

d* =2MD|Ka*, (3.12)
and

A8 =2M(E = E,¢)/i*a’. (3.13)
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Dimensionless matrix elements are defined as follows for G#G':

al d?

ASS = AfE k ke.), \
GG FF 4( sty }i D{ re Ve gl ki3) (3.14)
. _(aL)*d?

AGw = A =S5 5 (erelop-g m), (3.15)

i 4
48 = %5 = CX L 110y 1), 316

2#’:

and
. d?

ASE = E{m]v,_;_.;-l n, (&R¥)]

where a G or F subscript on A stands for state kg, or k.. Dimensionless
t-matrix elements are defined in a similar manner:

G F_ aL d’

De=D FEg |t]0k, 3.18
and
w _i(al)td’
g = 2553 D —(Gm|t| 0 k,), (3.19)

where a G or F superscript on D stands for state kg, or kg,. The asymptotic
form as z—co of the wave-function is now written explicitly in terms of the
dimensionless quantities D by use of (3.10):

L} ¥y (z > 00) = exp(— ik,2z) + (1 — 2iDY) exp[i(k,z + 28], (3.20)
and
(Lpg/pe)t We(z o) = — 2i Df exp [i(keez + &g + ¢e)]- (3.21)

The part, ¢, denoted here by ¥¢, of ¥ associated with the bound state
m may be written explicitly in terms of Dg:

(aLpo)t ¥5(2) = — 2i D b (2) exp(ics). - (322)

3.3, APPROXIMATE SCATTERING EQUATIONS

In order to develop an approximate solution of the t-matrix eq. (3.8), we
consider the summation over continuum states therein:

S, = (xlve-gl q) (G"qlt1 0 k,)
: (kf;-, -q* + ie) '

(3.23)
q

The work so far has been exact; for example, ¥ is given exactly by 3.n
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if (3.3) is solved for cg,, and (3.8) is the exact -matrix equation. However,
unlike the summation S, in (3.9), the summation §, cannot be done exactly,
and some approximation is necessary. The approximation used here is dis-
cussed in Appendix B, and amounts to calculating S, by keeping only the
imaginary part of (k2.,—gq*+ie)~?, that is —iné(kZ..—q*). The result is

ki, <0: §,~0, (3.24a)
kae > 0: Sy = — (iLjdke,) (¢ |vg- gl k) (F ko1t 0 k,), (3.24b)

where F is used instead of G’ for the reason stated just after (3.10b). Using
this approximation in (3.8), we obtain the following approximate t-matrix
equation, written in terms of the Df defined by (3.18) and (3.19):

iASDE=—AR(1—68g0)+i ¥ Y A% DL, (3.25)
G'2G

where /¢, as yet undefined, is defined for convenience by
=i, (3.26)

In practice, the calculation would be restricted to a consideration of, say,
R non-zero reciprocal lattice vectors and B bound states, resulting in, say,
the specular beam plus N other diffracted beams. [R is even because reci-
procal lattice vectors must be chosen in pairs. If G is chosen, then in order
that v(r) be real it follows from (2.5) that —G ‘must be chosen also: the
reality of v(r) is then assured because it follows from (2.4) that vg=0*_.]
To proceed, it is convenient to reduce the number of equations in (3.25) by
climinating Dj from the set; we have
aDj=Y ¥ AY DL. (3.27)
6'e0'F
Substituting (3.27) into the right hand side of (3.25) for G#0, we obtain the
following (N + BR) simultaneous equations for the remaining D% (G #0);

: G=F=1,2,...,.N;f=G=F
GG 4 G0 3 ey » 3 ¥
RIPIE, Dﬂ""*“{G=1,2,.,.,R;ﬁ=m=1,2,.._,3, (3.28)
where
Xg® = AG Aoy +i AL +1ZA‘“A" (3.29)

where the Aff, which are as yet undefined, are defined for convenience as
follows:

ASE = )8 (3.30a)
and

ASS =0 if a#p. (3.30b)
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We may note that, with these definitions, our approximate r-matrix equation
(3.25) may be written

i%%a{:‘f’ =A% (1 =3¢ o). (3.31)
The X3¢, for example, are given by
Xie = ARl + 1 +i Y |AF*/An, (3.322)
X568 = |ASel? — A% +1 Y 145012 [am, (3.32b)
X5 = A% ASS +iY ASy ANSIAN if a#p. (3.32¢)

In fact, it is almost always a good approximation to set i%=co, when the
disappearance of the last terms of X in (3.29) and (3.32) causes considerable
simplification. Reasons for this are discussed further in section 4.3.

We may emphasize that D) and Df, which appear, respectively, in the ex-
pression (3.20) for ¥, (z—c0) and in (3.22) for ¥ (2), are obtained in terms
of the D% (G #0) in (3.28) from (3.27); that is,

Dy =—i } ¥ Aol Dg, (3.33)
G#D
and
Dy =% ¥ Aud DGlZ,. (3.34)
G#Dd a

We note that Dj vanishes if i)= oo,

3.4, INTENSITIES AND UNITARITY

An “intensity”, R, is defined for each of the outgoing (specular and dif-
fracted) beams:

R = (Lugluo) |¥5 (z »o0)l*, (3.35)

where ¥; denotes the outgoing part of ¥; it follows from (3.20) and (3.21)

that
Rg = 6,0 — 2iDFI*. (3.36)

The intensities are defined so that

flux of atoms in the diffracted beam F

Ry = , :
, incident flux of atoms (3.37)
and it follows that the Ry must satisfy the relation
LRe=1. (3.38)
F
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The relation (3.38) corresponds to the unitarity condition of the r-matrix
theory13); it is proved from the above work in Appendix C.

4. Application to some special cases

It is instructive and interesting to illustrate the results of section 3 by
specializing them to cases in which only a small number, R, of non-zero
reciprocal lattice vectors and a small number, B, of bound states are con-
sidered. This specialization implies also a small number, N+ 1, of outgoing
beams, because N< R,

4.1. R=0, B=0, N=0
This is the simplest possible case, that of complete specular reflection; we
obtain

L} ¥y(z »w0) = exp(— ik.z) + exp[i(k.z + 2&,)], (4.1)
and

Ry =1 ' 4.2)

42. R=2, B=0, N=1
Here we have just two reciprocal lattice vectors, one of which is linked
to a diffracted beam, with no bound states

(4.3)

+ - C [' - 11”1;3;:]
LF Wo(z —o0) = exp(— ik.z) + exp(ik.z) .

I+ |Afql®

. ) ) ) 21‘1’0
(Lptefpio)* We(z ) = — i exp[i(kez + &p + ¢e)] [I__ﬂ:rl], (4.4)
+ |Ago

2|4zl T
Re=1-Ro=|—"p |- 4,
F -RIJ [I +IA;.:I1 [ 5]

43, R=2,B8=1,N=0,1"=w

The only outgoing beam is the specular beam, but passages through a
single bound state are allowed by two reciprocal lattice vectors. The as-
sumption that Ay, is large results in considerable simplification, and is gener-
ally valid because it follows from (2.8), (2.17), (2.18) and (3.13) that

a’i® = k! — 2ME_ [ (4.6)

Now kZ>0 and E, <0, and the only cenditions under which A% could be
small are either very low incident energy or very glancing incidence (k2 small)
coupled with the existence of a bound state very near the top of the potential
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well (— E,, small).
L} v, (z »o0) = exp(— ik,z) + exp[i(k,z + 2&,)] x

L —i|ASgI? (1/45 + 1/A.%)
* [1 AR + uz;':)]‘ &)
, 2450178
t ym —
(ki) ¥26) = 060 8.0) | e s | 49
Ryl (4.9)

We note that we cannot in general assume that A% or 4% is large as we did
in (4.6) for 2%, In fact, it follows from (3.13) that A5 is a measure of how far
the incident state is from resonance with a bound state m through the reci-
procal lattice vector G; for example, lﬁ:ﬂ' at exact resonance. The result
that A2 can never vanish follows from the fact that the incident state cannot
resonate exactly with a bound state without participation of a non-zero
reciprocal lattice vector.

44. R=R, =0

A general result for B bound states and N( < R’) diffracted beams can be
written in simple form with the (severe) restriction that the R’ non-zero
reciprocal lattice vectors are chosen so that none can be written as a differ-
ence of two others. With this restriction, the second term of X in (3.29) is
zero (there is no reciprocal lattice vector G—G"). As in the previous section,
we set A% = oo for simplicity, when only the first term of X in (3.29) remains

I} W, (z »0) = exp(— ik.z) + exp[i(k.z + 2£5)] (2 — 4)/d, (4.10)

(Luglue)t e(z »0) = —iexp[i(ke:z + & + &)] 24p0/4, (4.11)
and
(aLfuo)t ¥&(2) = exp(iéq) dm(2) 2450/40d (4.12)
where
A=1+ Y |Afl* +i ¥ ¥ 145017148, (4.13)
Fwd G#ED m
Ry = 4]Ag/4]?, (4.14a)
By ol ~ 5 B (4.14b)
Foo

5. The thermally-averaged potential energy function

5.1. GENERAL CONSIDERATIONS

Let us consider the details of the calculation of the thermally-averaged
potential energy function, v(r), from the instantaneous potential function,
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V(r, u), via (2.1). The function ¥(r, u) is itself assumed to be obtained by a
summation, over all atoms of the solid, of a pairwise potential energy
function, denoted by U(r—r,—u,), where r is the gas atom position, r, is
the equilibrium position of the solid atom n and w, its displacement from
equilibrium. Hence,

V(iu)=) Ulr—r.—u,). (5.1)
We recall .lhn: notation (2.3) and similarly define
e = (Ras 2,) (5.2)
for the equilibrium positions and
p=(P, p.) (5.3)

for wave-vectors. We write

V(e u)=(L/2n)* T J' U, exp[ip+(r —ra —u)] d°p,  (54)
where )

U,=L"? f U(r)exp(—ip-r)dr, (5.5)

and integrals are understood to be between the limits + co unless otherwise

indicated. Therefore, the thermally-averaged value, v(r), of ¥ (r, u) is given
by

v(r) = (L2n)’ EJ Uy exp[ip«(r — r)] {exp(—ip-w,)> d’p.  (5.6)
It is a well-known result that15)
_ Cexp(ip-u,)) = exp{—{(p-u)") =exp[- W(n,p)], (5.7
where W is a Debye-Waller exponent:
W(n, P, p.) = 3(p-u.)> (5.8)
= 3(pz Cul> + py Cupey + pl CuD). (5.9)
From (2.3), (5.3), (5.6) and (5.7), we have

v(r)=(L2n)* ¥ f d?P dg x

“ U’d cxp [iP'(R - Rn]] exp [IQ{Z - zu]] BKP[‘-‘ W{H, Pr q]]:
(5.10)

where g stands for the dummy variable p,; and where both z, and W(m, p, q)
are understood to be independent of n, and .

— 107 —



indice

80 M. CABRERA, ¥, CELLI, F.O.GOODMAN AND R, MANSOM

Using the result that
Y Y exp(iP-R,) = N,(2=/L)* ¥ 6(P - G), (5.11)
'

iy fiy

where N, is the number of surface atoms, we obtain

v(r) = N,(Lﬁ:r)%: exp(iG -+ R)

x Y | dq Ug, . exp(iqz) exp(— igz,) exp[= W(n, G, q)].  (5.12)

From (2.5 and (5.12), we obtain

vg(z) = (N, L|2n) J exp(iqz) Ug, ;ﬂp [- W(nG,q)] #p{— igz,) dg.

(5.13)
When W=0, v is to be interpreted as V:

Ve(z) = N,(L{2r) J exp(igz) Ug, , 3. exp(—iqz,) dq. (5.14)

If we define )
Ve.q=L" I Ve(z) exp(—iqz) dz, (5.15)

it follows from (5.14) that

Ve, g = NiUg, o 2 exp(—iqz,). (5.16)

For simplicity, we make the approximation that W is independent of n.,
replacing W(n, G, q) by W(G, q):

W(G, q) = $(G* Cup> + q* <uDd), (5.17)
where we have set ;
uiad = uja> = Cuz) forallm, (5.18a)
and
ul>=<u?y foralln. ~(5.18b)

With the approximations (5.17) and (5.18), it follows from (5.13) and (5.16)
that

vg(2) = exp(— $G? {uz>) (L/2n) '[ exp(igz) Ve, exp(— 44 {ui)) dq.
(5.19)

Substituting for Vg_,in (5.19) from (5.15) and carrying out the g-integration,
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we obtain
exp(— $G* (uzd) . (-2},
v6(z) = n {uf}]i Vgl(z }r.xp(_ o dz'.  (5.20)

5.2, THE MORSE POTENTIAL REPRESENTATION

We represent V,(z) by a Morse potential'), and Vg(z) by the corre-
sponding exponential repulsion if G#£0:

Vo(2) = D' fexp[2a(zh — 2)] — 2expla(zp— AT}, (521)

Volz) = xg D' exp[2a(z, —2)] fG#0. (5.22)
Let us consider the general term '
Ve(z) = Aexp(— bz). . (5.23)
Inserting (5.23) into (5.20), we obtain
vg(z) = exp(— $G* (ul)) exp(3b” Cupd) Vo (2). (5.24)

Therefore, with the expressions (5.21) and (5.22), our thermally-averaged
v, (2) remains a Morse potential, with the same a but with modified D and
z,,; our thermally-averaged vg(z), for G#0, remains an exponential re-
pulsion, with modified kg, D and z,,!

ve(z) = D {exp[2a(z, — z)] — 2 exp[a(z. — 2)]}. (5.25)

and
vg(z) = keD exp[2a(z, — 2z)] forG#0, (5.26)

where

Kg = Kg exp(— 3G u3)), (5.27)
D =D exp(— a®<{ul)), (5.28)

and
2 =25+ dadul). (5.29)

5.3, EIGENSTATES AND MATRIX ELEMENTS

With v, (z) given by the Morse potential (5.25), the eigenstates ¢, defined
by (2.12)~(2.16), are6:17)

Ir(} —d + ip)

g ¢q {2] = l r(?.l_u] lf Ed wa. in (f} ' (53{}]

and

}
a'*¢,(z)=[{::d'_ll_f:]};l] e~ BT TN, (53D)
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where p is defined to conform to the notation (3.11),

p=qla, (5.32)
{ is defined by .
{=2dexp[a(z, - 2)]. (5.33)
and where W, 5({) and L, ({) are, respectively, the confluent hypergeometric
function %) of { and the generalized Laguerre polynomial function??) of {.

The cigenvalues, E,, are given by (2.13) and (2.14) where k, for a bound
state is given by

kn=a(d—4%—n), n=0,1,2,... (n<d-14). (5.34)

With the above representation of the potentials vg(z), the matrix elements
(3.14)-(3.17) may be expressed as follows

Arr.  m [sinh(2mpg) sinh (2mpe)]*
e 5 B [cosh(2rpuy) — cosh(2mug)]

\r d )l
% [(#r ui +2d) ! I‘Ei — R _t :::r})l

r d
+ (up — pp- — 2d )| j%ﬁ%l] (5.35)
i;;__*‘gr_; _ (2d —2m — 1) ]
Hf—ﬁ—xc :— [ﬂlr{2d—ﬂl— 1}
[ sinh (27u;) ]*
% | — - | x
cosh(2npy) + cos(2rd)
X(urp+(d=t—mP +2d)IF(k+d +in)l,  (5.36)

:ﬂf_' (=)""[(2d =m-1) m!
Fog 4 [{Zd—n-l}T

x[(m=n)(2d=m-n—1)+2d] ifm=n. (5.37

. ¥
-(2d — 2m ~ 1) (2d — 20 — l]] *

If ASS for n>m is required, then m and n are interchanged in (5.37).

6. Discussion of the elastic scattering theory

6.1. RELATIONSHIP TO THE DISTORTED WAVE BORN APPROXIMATION

If the results of sections 3 and 4 are expanded to lowest order in the matrix
clements, the first order (distorted wave Born approximation) results are
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recovered, For example, from section 4.2 we obtain

Ry=1-4X, (6.1a)
and
Rp=~4X, (6.1b)
where
X = |48, 62)

provided that X <€ 1. There is little difference between the first-order results
(6.1) and our results (4.5) if X <1, that is, if the matrix element modulus
is “small”; of course, this is the motivation behind first order theory., The
point here is that the present theory leads to sensible results no matter how
large are the matrix element moduli.

For example, two particularly interesting results follow from (4.5): (i) for
certain values of the matrix element AEQ, the intensity of the specular beam
is considerably less than that of the diffracted beam; indeed, if |43 =1, the
specular beam vanishes and all outgoing atoms pass into the diffracted
beam: (i) for both very small and very large values of |A5gl, the specular
intensity approaches unity and, of course, has a minimum for intermediate
|AES|; for the special case (4.5), this minimum is zero, as observed in (i).

6.2, RESONANCES WITH BOUND STATES

A result of considerable importance concerns the case of “resonance™ of
the incident beam with a bound state; for E= E, ; we obtain exact resonance,
with A =0 from (3.13). It follows from the above results [for example, (4. 13)
and (4.14) and their generalizations] that, when exact resonance oceurs, the
intensity of the specular beam rises sharply, and that of each of the other
beams falls. On the other hand, it has been known for some time that,
experimentally, the intensity of the specular beam generally falls as resonance
is approached !8:19), This fall in the specular intensity is undoubtedly due to
inelastic scattering of the gas beam, the probability of which is greatly in-
creased if the gas atoms resonate into a bound state, because of the extra
time they stay (while travelling over the surface in the bound state) in close
proximity to the surface. The theory developed so far considers only elastic
scattering, and all gas atoms are either specularly scattered or diffracted,
independently of the time they spend in intermediate bound states. The
above points regarding the effects of inelastic scattering are considered
further in section 7.

6.3. SURFACE RESONANCES

The phenomena which we call “surface resonances™ are most easily dis-
cussed with reference to the actual forms, (5.35) and (5.36), of the matrix
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elements. These resonances refer to the behavior of the diffraction as a
diffracted beam just appears above, or just disappears below, the surface.
(We note from (2.19) and (3.11) that a diffracted beam is allowed if pug>0,
and is not allowed if uZ <0.) This behavior depends critically on d, the para-
meter defined by (3.12) where, of course, a and D are now the Morse po-
tential parameters; two extreme types of behavior are possible, with a
gradually-varying spectrum in between. We restrict attention for the moment
to the example in section 4.4,

The first, and simpler, extreme type of behavior occurs in general when d
is not nearly half an odd integer, say when d~integer. Then, |4%9|2/1S
varies smoothly in general as uZ passes through zero, and |A55|*—constant
x i as pp—0+ . It follows from (4.13) and (4.14) that, as a diffracted beam,
say F', disappears, the intensity R;. falls rapidly, but smoothly, to zero, all
the other intensities R, (F# F’) increasing rapidly, but smoothly, to pick up
On new curves. )

As d becomes closer to half an odd integer, the behaviors of the Ry be-
come more complicated. If

‘d=n+14+4,, (6.3)

where |§,| is small, the relevant matrix elements have the following forms for
small |ug| or u}:

AFOp2
Arol e (6.4a)
kg (8, + pr)
and
4" 20, (6.4b)
KGie (33 + kD) '
where
1+ 2n)?
X= I—ﬁculh(n Hg) ({H—:—I] IF(n+ 1+ lpn)l {(6.4c)
n!

and where we note that the bound state n does not exist unless d, 20, At
d,=0 exactly, we obtain, again for small |2 or u2:

Afol® = ki X ug (6.5a)
and

|ASSI2 A€ = 0. (6.5b)

For this special extreme case (d-half an odd integer), nothing spectacular
happens as onc of the _n,;, say ug-, increases through negative values to zero,
but, for ug.=uj =0, |AE-ol? tends to infinity and R, jumps discontinuously
to unlt:r. all the R¢(F+0) dropping to zero. R, falls and Rg(F#0) rises as
|AF-g)* decreases through moderate values, and in fact Ry then displays a
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minimum, Ry displaying a corresponding maximum; for smaller values of
|AF-01%, R, increases rapidly to later pick up on a smooth curve, this increase
being accompanied by a corresponding decrease of Rg.. If 8, is not exactly
zero, these results are somewhat modified, although the resonance phenome-
na persist provided that |8, is not too large. Similar resonances as p2—0
have been discussed by McRae'?) for the case of low energy electron dif-
fraction.

Fig. 1 illustrates the behavior of the intensities as functions of pg. where

-0

_,_\\J’L\' (a)

-
- [K]
0

1
LH|
M1

Fig. 1. The behavior of the intensities Ro(—1), Re{------ } and Re-(-----) as functions

of yi®g: where some of the resonance phenomena, discussed in section 6, occur. (a) Ko

and Rp when a resonance with the bound state m occurs via the reciprocal lattice vector

G for a special case of the type discussed in section 4.4, (b) Ro, Rp(F" =G") and

Re(F # G") as the diffracted beam F” appears above the surface (at s%g- = p2¢- = 0) when
d = integer. (c) The same as (b) when d = half an odd integer.

some of these resonance phenomena occur. Fig. 1a shows R, and R, when
4 resonance with the bound state m occurs via the reciprocal lattice vector
G for a special case of the type discussed in section 4.4, Fig. 1b describes
Ro, Ry (F'=G")and Ry(F#G") as the diffracted beam F’ appears above the
surface (at pg =pf.=0) for a case in which the “surface resonance” de-
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scribed above does not oceur (that is, d=integer, say). Fig. lc illustrates the
same case as does fig. 1b, except that now d=half and odd integer exactly.

We note that these surface resonances, discussed here for p2—0, occur
also when pi—0 that is, they occur as tangential incidence is approached:
However, resonances of this type are not as important because the incidence
must be too close to tangential to be feasible experimentally,

7. Extension to inelastic scattering

We consider in this section the effects of excitation and de-excitation of
thermal vibrations in the solid by an impinging gas atom; the need to
consider the thermal vibrations is already foreshadowed by our use of the
thermally-averaged potential, v, in section 2. The formal theory is a direct
generalization of that developed in sections 2 and 3, and many intermediate
steps are omitted.

The wave-function, ¥ (r, ) may be expanded as follows:

'F(r? HJ = K'E cl’.x.v ‘ﬁa(z] EIH'-H lﬂ'{u), {?l}

where @, (u) is a vibrational wave-function of the solid, v runs over vibra-
tional quantum numbers, and the sum over K’ replaces that over G in (2.6).
Of course, K’ assumes all values and not just those K+ G. We introduce a
shorthand index, f or g, for all the quantum numbers XK', a, v; we use g in
general, and / when we wish to stress that weare dealing with a final outgoing
state (this notation parallels the F, G notation of section 3). The label 0 is
reserved for the quantum numbers of the initial (or specular) state.
The analogue of (3.5) is

e,e” %0 =3 o4(Ey—E, +is) ' 19, (7.2)
where E, and E, include the vibrational energies; the analogue of (3.6) is

Ig0 Bl Z Cy V;w' = (?'3]
g#g
Our r-matrix equation, the analogue of (3.8), is obtained by substituting for
¢, in (7.3) from (7.2):

to=Voll =8, o) + L i (1.4)
oo g N 0) nga (E“ o E,'
The notation is further refined so that g==5 stands for a quantum number
set associated with a bound state and g =¢ with a continuum state; we note
that f is always associated with a continuum state. Then, dimensionless
quantities may be defined by direct analogy with (3.11)-(3.19) and (3.26).
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Care must be taken over interpreting the definitions, some
presented here explicitly:

He

‘i'll = ZM (Ea - Eb}ﬂlﬁzﬂz ]

k{!llra! -ngkfz.'rar etc.

Ao =1,
alL d?
;—————— V.. fote#c,
& 4(;‘:&]:.}{. D (23
_(aL)*a?

b = 2_#3 E eh s

2

d
Aﬁb' = D' Vbb' i'I'.'II' b 5& b-f 3

. al. d*
= ————— g,
" 4(uon)t D
and
i(aL)* d®
Dﬁ ] '-'[.—'-!_— - 'bl:l .
2y D

The final intensities have the same form as those (3.36):

Ry =Ry(Ky, kpo vp) =185,0— 20 D>

87

of which are

(7.5)
(7.6)
(1.7)

(7.8)
(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

The final quantum numbers are not arbitrary, but must satisfy the condition

of energy conservation:

-ﬁ]{K} + k}:} + IME 3 (vy) = R (K3 + ka:) + 2ME ;,(ve).  (7.14)

In the elastic treatment, the vibrational energy is unchanged and therefore
disappears from (7.14), K, — K, is equal to a reciprocal lattice vector, F, and
(7.14) reduces to (2.10). The initial and final vibrational states of the solid
are not observed in experiments to date; we must, therefore, average (7.13)

over initial phonon states and sum over final phonon states,

As in section 3, an approximate, but unitary, f-matrix may be obtained
by keeping only the imaginary part of (E, — E,. +ig) ™', thatis —ind (Ey — E,-),
in the integral over continuum states in (7.4); in this way, the following

analogue of (3.25) is obtained for all g:
i}'IDi' == A’n(l - {i’.a] + i E APD' DH' ¥
. BEF

where we recall the definition (7.7).
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In the case of elastic scattering, where the parallel momentum of the gas
atom may change only by discrete amounts, the solution of (7.15) is straight-
forward, and some solutions are discussed in section 4. The case of inelastic
scattering is more difficult since both the energy and momentum of the gas
atom may change continuously over wide ranges of values. However, if we
are willing to make the restriction that the gas atom exchanges only a single
phonon with the solid, the solution of (7.15) is again straightforward. For
example, if we consider a system with no diffraction and only ““one-phonon
beams”, p, scattered around the specular beam, 0, the (unitary) dimension-
less -matrix, D,, is given by the following set of equations:

Do=—i¥ Ag,D,, ' (7.16a)
P
and
D, = A,(1 —iDy), (7.16b)

where Ep implies summations over both K, and v, and where v, differs from
vp only by the emission or absorption of a single phonon. From (7.13) and
(7.16) it follows that the intensities are given by

Ro=1-YR,, (7.17a)

and
d-|Aﬂu|2

L+ Y 4,07
&
As a less trivial example, let us consider a system in which, in addition

to undergoing inelastic processes, a gas atom may be diffracted into a bound
state, b. With the one-phonon approximation, we obtain from (7.15)

(7.17b)

iDo = AgyDy + ¥ Ao, D, (7.18a)
—i1,Dy = Ayo (1 = iDg) = i ¥ Ay;D,, (7.18b)
n
and
DF=AP'](I —iﬂn}—iffﬁ,ﬂ'b. {?.IBC}

The intensities, R, are found as usual by solving (7.18) for the D, and
substituting into (7.13).

These intensities, as well as those (7.17), must still be averaged over initial
phonon states and summed over final phonon states; this has not yet been
done. A reasonable approximation, which preserves unitarity, is to average
separately each term in the numerators and denominators of the resulting
expressions for the D,. Then, diffraction matrix elements such as A,y be-
come matrix elements of the thermally-averaged potential defined by (2.1),
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while averages of summations such as } , [A4,0|* may be found using methods
developed by Van Hove?!). These averaging problems are not discussed
further in this paper.

In order to obtain a simple qualitative picture of the el’fects of a bound
state resonance on inelastic scattering, and in particular on the specular
intensity, let us simplify (7.18) by assuming that, near the resonance, phonon
exchange is important only when the gas atom is already in the bound state.
With this simplification in mind, we set 4,,=A4,,=0 in (7.18) and derive
from (7.13) that

Ro=1-3%R,, (7.19a)
- .

and
41Apa/4ml

R
g ‘]-az +{Mm| +E|Apl'ri]

(7.19b)

Assuming that the matrix elements are sufficiently slowly-varying around
the resonance, we obtain the important qualitative result that R, has a
minimum and each R, a maximum at exact resonance, when 4,=0. This
result should be contrasted with the corresponding results for elastic scatter-
ing in sections 3 and 4, in which R, has a maximum (R, =1) at exact reso-
nance. That the experimentally-observed minimum in R, at resonance 1%, 18),
discussed in section 6.2, is a result of inelastic, rather than of elastic, scattering
was suggested by Lennard-Jones and Devonshire 22),
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Appendix A. Evaluation of S, in (3.9)
In the limit of L—co, (3.9) may be written as an integral:

(GqgliOk,)
(k&: — q* + ig)

S)(z ) = 1 j

[ itg=z+4,) + ¢-|m+¢.)] dq (ﬁ”

where we have taken the limit as z— o and substituted for ¢, from (2.16b).
The contours chosen for evaluation of these integrals are shown in fig. Al.
Contour A is chosen for the first integral, and contour B for the second.
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Then, for a very general r-matrix [that is, for a very general v(r)], the contri-
butions to the integrals from those parts of the contours which do not lie
on the real axis vanish in the limit of z— co. For this to be rigorously true,
it is sufficient that the t-matrix has no singularities on the positive real axis;

Fig. Al. Contours chosen for the integrals in (Al). The limits are B — e and
¢ &f2kg: — 0. (@ poles for kg < 0; = poles for kg > 0).

this will be so for a physically realistic v(r). The only contribution to the
integrals, then, comes from the pole at ¢=(kg, +ie)* when kZ, 20, and the
result (3.10) is obtained.

Appendix B. Evaluation of 5, (3.23)

In the limit of L— oo, (3.23) may be written as an integral:

L [ (@log-¢19)(G il 0k,)
2n (k&: — q° + ie)

Q

Sj_: fj: {Bl}

and the contour chosen for its evaluation is shown in fig. BL. It'is assumed
that the integral is equal to one-half of this contour integral, and that the
only significant contribution to this contour integral is from the pole at
g=(kg.+ie)t when kZ.>0. The result (3.24) follows.

That this is only an approximation is clear, for example, from the fact that
the contribution when k2., <0 is ignored ; this is equivalent to ignoring the
beams which are “diffracted into the surface”. The approximation is more
serious, however, as singularities of both (xlvg_g| g) and (G’ glr| 0 k) in
the upper half of the g-plane are ignored also.
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The contributions when kZ.,<0 could easily be included in the above
formalism; for simplicity, however, they are not considered further in this
paper.

Fig. Bl. Contour chosen for the integral in (BI). The limit is -,
(@ poles for k%', <<0; x poles for k%"= 0).

Appendix C. Proof of unitarity (3.38)

In this appendix we use: (i) the convention of summation over repeated
indices « and f# and (ii) the convention that summations over F, G and G’
do not include the zero reciprocal lattice vector.

Then, from (3.33), (3.36) and (3.38), we observe that we are required to
prove that

2Z=|1-2Y AQ°DE>-1+4% |DF* =0. (C1)
[H F
We have

2=—§(D§AE€+AEEDE)+2 Y DG Agy Aol :';H;lnilz. (C2)
[

It follows from (3.28) and (3.29) that we may define an X% such that

XE=F A AN Db +i T ASF DL +iASF DL

' G, G#®G

+i Y AS) AN DLJih — A% =0. (C3)
m, G
Therefore,

0=Y (XF D% + X% D)
@

= 3 (D5 4% 435 Db + DF ALY 432 DY)
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+i ) (D Ay Dg — Dg ALC DY)
G.G'#G

+i Y (D5 A3y DG - D A5Y" DY)
G

+1i gﬂdtn:; ASn Ani De — D Ag) AN Dg)A%
am,
- % (Dg A% + ASS DE). (C4)

The two terms in the first summand are equal; the two pairs of terms in the
second and fourth summands cancel; on account of (3.26) and (3.30), the
only terms remaining in the third summand are those for which both a=p§
and G=F, when the two terms in the summand are equal, We are left with

0=2 3 Dg A% As5 D& + 23 1D
6.6 F
=2 (D5 A + AT DG) = Z, (C3)
which completes the proof.
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Biografia de D. Nicolds Cabrera Sanchez
por Sebastidn Vieira Diaz

El siglo veinte, éste siglo que concluye, deja a la humanidad en una
situacion compleja y fascinante a la vez: De una parte con un conocimiento
y control, impensables hasta hace bien poco, de nuestro mundo a escala
molecular y atomica, y de otra con una conciencia de su insignificancia a
escala de los espacios y tiempos en los que se extiende el Universo. A lo
largo de mi vida, creo haber constatado que la gente, en general, digiere los
mas importantes logros cientificos y técnicos, con idéntica falta de
capacidad de asombro como con la que participa en la naturaleza. A
menudo, pasamos al lado, sin darles mayor importancia, de los hombres y
mujeres que han contribuido, como escribia Marcel Proust, "a levantar
parcialmente en nuestro honor, el velo de miseria y de insignificancia que
nos deja indiferentes ante el universo". Entre estos seres singulares, yo tuve
la fortuna de conocer y tratar, y de gozar del afecto y la confianza, de un
hombre de una extrema sencillez y caballerosidad, pero ante todo, un
hombre con una gran capacidad y pasion por la creacion cientifica. Voy a
hablarles de D. Nicolas Cabrera Sanchez.

(Quién fue D. Nicolas Cabrera? El apellido Cabrera es, con justicia, el
que con tanto carifio ponderan y valoran sus paisanos lanzarotefios en la
figura historica de D. Blas Cabrera y Felipe, fisico notable y personalidad
sefiera, cuyas contribuciones permanecen en el no muy poblado acervo de
la ciencia espafiola. Blas Cabrera se cas6 con Maria Sanchez Real, siendo
Nicolas el mas pequefio de sus tres hijos: Blas, Luis y Nicolas. EI ambiente
de su infancia fue de una singular pujanza creativa. Cientificos, artistas y
otros creadores, visitaban asiduamente su casa de Madrid, circunstancia que
dejoé en su memoria recuerdos imborrables como fue la visita de Alberto
Einstein. Tenia Nicolds nueve afos, cuando su padre invitd a Einstein a una
reunion en su casa, a la que asistia también el guitarrista Andrés Segovia,
quien toco algunas composiciones en honor del ilustre visitante. Este, pidio
un violin y toco también, causando la admiracion de la audiencia por su
virtuosismo. Esta anécdota la contaba D. Nicolds con una sonrisa
admirativa y nostalgica en los labios. Un nifio que tenia la posibilidad de
participar en ambientes como el descrito era, en principio, un nifio
afortunado. Por eso D. Nicolas fue siempre agradecido con su pasado, vy,
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especialmente, a la figura de su padre. Gustaba recordar sus antepasados
islefios, que se remontaban segiin sus datos, a Luis Cabrera Rodriguez,
vecino de Garachico (Tenerife), quien se trasladd a Teguise en Lanzarote
hacia 1750. Aqui nacieron y vivieron tres generaciones de Cabreras,
personalizadas en Lorenzo Cabrera Lopez, nacido hacia 1770. Juan Antonio
Cabrera del Castillo, nacido en 1807. y Blas Cabrera Topham, nacido en
1851. Este ultimo fue el padre de Blas Cabrera y Felipe, quien se establecid
en Madrid donde estudi6 y trabajé como cientifico. La biografia de este
fisico notable, su importancia en el contexto histoérico en el que se
desarrolld, ha sido objeto de numerosos estudios, hechos por personas
capaces, que dedican su esfuerzo a la historia de la ciencia y la técnica en
Espaia. Entre estas se encuentran mis amigos Francisco Gonzilez de
Posada y José Manuel Sanchez Ron, quienes escudrifian aquellas décadas
de la primera parte del siglo, cuando Espafia parecia dejar su estado de
postracion cientifica, lo cual se vio frustrado por una guerra que tantas
cosas asolo. D. Nicolds se lamentaba de este fracaso con la siguiente
reflexion: "Es dificil imaginar una iniciativa que haya tenido tanto éxito en
su evolucién, que prometiera tanto para su futuro, y que desapareciera en un
corto periodo después de la guerra civil". Creo que la mayoria de las
personas que trataron a D. Nicolas, se pudieron percatar del enorme respeto
que tenia a la obra de su padre, y de su deseo de tender un puente que la
conectase con un resurgimiento cientifico, en el que €I, su hijo, iba a jugar
un papel crucial. Es emocionante, asi al menos lo siento yo, comprobar
como aquel respeto y admiracion, no lo llevaban a perder su capacidad de
ponderar la labor cientifica. Ponderacién que, en su mente, se hacia
tomando como referencia el nivel de la comunidad cientifica internacional,
la uinica posible, a la que su padre habia pertenecido. Refiriéndose a un libro
editado con motivo del homenaje que la Universidad de Canarias organizo
para conmemorar el centenario del nacimiento de Blas Cabrera, en el que
se recogia una seleccion de las publicaciones de éste, escribia D. Nicolas:
"También en dicho libro se reproducen algunos de sus trabajos, once de
ciento cincuenta, que a juicio del comité organizador del homenaje pueden
ser mas interesantes, ya por su valor intrinseco o bien como un ejemplo de
lo que puede hacerse en un ambiente de tan escasa tradicion cientifica como
era el nuestro." Como decia anteriormente, me emociona la sobriedad en el
elogio a la contribucion cientifica de su padre, y la referencia implicita,
llena de admiracion, a su esfuerzo y capacidad de lucha, cualidades que
heredd y que se hicieron patentes en momentos cruciales de su carrera.
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He querido resaltar, a lo largo de mi exposicion anterior, aspectos, en
mi opinion ineludibles para profundizar en la semblanza de Nicolas
Cabrera, referentes a la influencia que sobre ¢él ejercié su padre. Dicho esto,
vamos a dejar caminar sélo a nuestro protagonista que, como espero quede
patente para aquellos de ustedes poco familiarizados con su obra, acumulé a
lo largo de su vida méritos sobrados como para ocupar, en solitario, el lugar
distinguido que le corresponde.

En el titulo de mi conferencia se pone énfasis en dos aspectos de la
vida profesional de D. Nicolas: el aspecto de fisico creativo y el aspecto de
organizador de la investigacion y la docencia de la fisica en el nivel
universitario. Dado que las circunstancias histdricas primero, y su interés
profesional después, lo llevaron a cambiar de trabajo y de pais, varias veces
a lo largo de su vida, es posible relacionar dichos cambios, con las diversas
etapas cientificas y académicas en las que se puede dividir su biografia.

Es baladi, quiza, sefalar que una obra tan vasta como la éste
cientifico, no puede ser expuesta, con una minima profundidad, en el
tiempo de ésta conferencia. Los historiadores, estoy seguro, haran dicho
trabajo con la profesionalidad requerida, de forma que, una vez sobrepasada
la distorsion de la proximidad temporal, aparezcan el personaje y su obra en
la dimension que les corresponde.

Voy a desglosar, en primer lugar, diversos aspectos de la actividad
cientifica de D. Nicolas. Posteriormente me referiré a su actividad como
organizador de la docencia universitaria y de la investigacion.

La primera orientacion de nuestro personaje fue hacia los estudios de
historia, aunque finalmente se decant6 hacia los de ciencias. Hizo un afio de
ingenieria, pasando a continuacion a cursar la carrera de fisica en la
Universidad de Madrid, obteniendo el titulo de licenciado en 1935, cuando
contaba veintidos afios. Se inici6 a la investigacion en fisica experimental,
en los laboratorios del Instituto de Fisica y Quimica, centro de prestigio
internacional, creado y dirigido por su padre. La tarea que se propuso fue
extender a las temperaturas del helio liquido, las medidas de susceptibilidad
magnética de los compuestos de tierras raras que Salvador Velayos habia
descubierto en su tesis. Estas medidas eran muy importantes para hacer
comparaciones con los calculos tedricos del profesor de Harvard J.H. van
Vleck. Aunque como fruto de la investigacion publico su primer articulo,
con su padre y Velayos como coautores, la guerra acabd, al igual que con
tantas otras cosas, con éste esfuerzo ilusionado. Yo he dedicado mi
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actividad cientifica a la experimentacion a bajas y muy bajas temperaturas,
campo en el que me considero un pionero en nuestro pais. Pienso, a veces,
lo que aquella empresa tuvo de grande. En 1935 se habian planteado
adquirir un sistema para producir helio liquido, sistema que poseian muy
pocos laboratorios en el mundo. jQué gran vision de futuro se requeria para
lanzarse en esa direccion! Como consecuencia de la guerra todo aquello se
vino a pique, plantedndose diversas opciones a los jovenes cientificos que
trabajaban en el Instituto de Fisica y Quimica. Entre éstas se encontraba la
disyuntiva de emigrar o de quedarse en Espafia. D. Nicolas se fue y lo
recordaba asi: " Del grupo de jovenes hubo los que se quedaron como
Velayos y los que nos fuimos. Me he preguntado muchas veces cual deberia
haber sido idealmente la actitud mas apropiada. Desde el punto de vista de
la Universidad espafola fue siempre evidente que Velayos y su grupo
tenian razon. Si se podia contribuir a la formacion de los futuros cientificos
espafioles habia que intentarlo. Por otro lado, también es verdad que en
tanto que cientificos debemos intentar contribuir al progreso de la Ciencia
donde mejor podamos hacerlo. Combinar los dos objetivos es a veces
imposible, de modo que cada uno debe de tomar sus responsabilidades de
acuerdo con las circunstancias. “Esta reflexion resume, mejor que cualquier
otro comentario, la postura de D. Nicolas en su compromiso con la creacion
cientifica.

La familia Cabrera lleg6, como refugiada, a Paris en 1938. El joven
Nicolés encontro trabajo en la Oficina Internacional de Pesos y medidas. Su
estancia en Paris, que se extendio hasta 1952, iba a ser decisiva en su vida.
Se casd con Carmen Navarro, también de familia exiliada. se doctoré en
Fisica, y, a pesar de su habilidad para la fisica experimental, como
reconocia Salvador Velayos, supervisor suyo en Madrid, orientd su
investigacion hacia la teoria. Su talento natural para los estudios tedricos
encontré una especial satisfaccion, en la lectura del libro de Dirac de
mecanica cuantica. Esa lectura le produjo un notable impacto que €l solia
recordar, tal como yo pude comprobar en su ultima etapa madrilefia. Su
tesis doctoral, que consistié en un estudio tedrico de las transiciones de fase
termodinamicas, tuvo la supervision de dos fisicos reputados, como fueron
Louis de Broglie y Leon Brillouin. Al mismo tiempo, en el laboratorio, se
interesaba en el efecto que la oxidacion de los metales tiene en Ia
metrologia. Ello le condujo a hacer experimentos para entender el proceso
de oxidacién del aluminio, experimentos que, tal como se refleja en su
curriculum, cubrieron un nimero importante de aspectos. Ello da idea de su
tenacidad como cientifico, que una vez abordado el problema quiere

— 124 —



penetrar hasta el fondo en su solucion. Estudi6 la influencia de la luz, del
grado de humedad, y de la temperatura, en el proceso de oxidacion. Prepard
muestras en forma de peliculas delgadas y las caracterizd por diversos
procedimientos. Publicé en francés doce articulos sobre éstos temas, entre
los que voy a comentar uno, el segundo de la serie, publicado en 1945. Es
una nota breve en la que Cabrera discute la importancia de diversos
mecanismos en el proceso de oxidacion. El entonces, ya prestigioso fisico
Neville Mott, habia propuesto una teoria de la oxidacion de los metales, en
la que ésta era comandada por el paso de electrones libres del metal a la
banda de conduccion del 6xido, entre las que hay una diferencia de energia
@, seguido de la difusion hasta la superficie 6xido-aire. @ define la altura
de una barrera de energia cuya anchura viene determinada por el espesor
del 6xido. Para anchuras pequefias de la barrera, como sucede en las
primeras etapas de la oxidacion, y a bajas temperaturas, el mecanismo mas
eficaz es el tinel cuantico de los electrones a través de la barrera. La
activacion térmica es otro mecanismo importante, sobre todo a altas
temperaturas, y para valores bajos de la barrera. Los resultados
experimentales de Cabrera, le llevaron a proponer un nuevo mecanismo
precursor de la oxidacion, que denomind fotoeléctrico, segiin el cual los
electrones pasaban la barrera mediante el efecto fotoeléctrico. Admitido
éste mecanismo los resultados experimentales, se podian explicar
adecuadamente. Este, y los otros articulos citados, atrajeron la atencion de
Mott, el cudl invit6 a Cabrera para trabajar con él, en el H.H. Wills Physical
laboratory de la Universidad de Bristol. Alli pasd Cabrera los tres afios que
consideraba los mas fructiferos de su carrera cientifica. Antes de pasar a
desglosar éste periodo, avancemos que la estancia en Paris configurd el
campo de la fisica del sélido al que Cabrera dedico su trabajo cientifico: La
fisica de las superficies. La interaccion de un so6lido y su entorno, se
produce en la interfaz fronteriza a ambos. Procesos de extrema importancia,
como es, por ejemplo, el de la oxidacion de los metales se desarrolla en
éstas regiones. Cabrera fue un pionero y una de las figuras mas relevantes
en el nacimiento y desarrollo de ésta rama de la fisica. La invencion, en la
segunda mitad de éste siglo, de técnicas potentes, especialmente las de ultra
alto vacio, ha permitido profundizar en el estudio de fendmenos que se
producen en superficies muy bien caracterizadas. D. Nicolas, fue siempre
un impulsor y un semillero de ideas, para los fisicos experimentales que se
dedicaron a éste tema de investigacion. Volvamos ahora a Bristol, pues ya
hablaremos de esto, posteriormente, con mas detalle. La capacidad creativa
de nuestro personaje encontrd alli la pujanza cientifica y el ambiente
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adecuado, para dar lo mejor que llevaba dentro. Hay muchos trabajos que
seria interesante comentar, pero me voy a limitar a los dos que son, sin
duda, las perlas de su curriculum. El primero que versa sobre la oxidacion
de los metales, lo hizo en colaboracion con su mentor Sir Nevill Mott (1).
En él se presenta la primera teoria cuantica del crecimiento del 6xido. El
segundo, que trata del crecimiento de los cristales y los estados de
equilibrio de sus superficies lo escribié con F.C.Frank y W. K. Burton (2).
Se expone en ¢l la primera teoria del crecimiento cristalino que considera la
interaccion entre el crecimiento y las dislocaciones en el cristal. En éste
articulo se propone, también por vez primera, que la fusion de la superficie
puede preceder a la del volumen, fendmeno que se conoce como la
transicion rugosa.

Dichos trabajos, que la logica brevedad de ésta conferencia no
permite comentar, siguen teniendo plena vigencia, lo que es facilmente
comprobable haciendo una busqueda de las veces que son citados en otros
articulos cientificos. En mayo de 1997, y con motivo de la entrega, por
parte de la Fundacion General de la UAM, a la Facultad de Ciencias y al
Instituto Universitario de Ciencia de Materiales "Nicolds Cabrera" de
sendos retratos al carboncillo que el pintor gaditano Hernan Cortés hizo de
nuestro personaje, pronuncié¢ unas palabras glosando su figura. Para éste fin
encargué al servicio de documentacion de la UAM, una relacion de las citas
que los dos trabajos habian tenido durante los diez afios anteriores. Estas
superaban las mil quinientas. Ello, considerando que habia transcurrido casi
medio siglo desde su publicacion, es lo suficientemente significativo para
mostrar la trascendencia cientifica de la obra de D. Nicolas. Obra sélida y
bien construida, cuya permanencia le da una proximidad que ahuyenta a los
alabadores de reliquias. Para expresar su solidez, yo sacaba a colacion en
mis palabras citadas, el motivo de una diapositiva que un ilustre profesor de
mi universidad solia poner en sus charlas comentando obras perdurables.
Era una sefial de trafico en la que se leia el siguiente aviso: "Camiones por
el puente romano". Eso es lo que reflejan las citas. Hoy dia en que llegan a
todo el mundo, habida cuenta de la capacidad de difusién que se ha creado
en nuestra sociedad, tal cantidad de opiniones vacuas, reiterativas, sin
ningun tipo de contenido, cualquiera se puede percatar de lo dificil que es la
permanencia. Eso pasa también en el mundo de la ciencia. Las revistas
crecen almacenando experimentos y teorias que nadie considera. En la
hemeroteca de mi departamento alguien puso, con gran sentido del humor,
un cartel en el que se recogia una frase atribuida a Pauling, referida al
crecimiento a lo largo de las estanterias de una revista determinada. Decia:
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"En su crecimiento avanza por las estanterias a una velocidad superior a la
de la luz, pero ello no contradice la teoria de la relatividad, porque no lleva
informacioén alguna." Como debe quedar claro no es éste el caso de la obra
de D. Nicolas.

Sus trabajos de Bristol, hicieron que diversas instituciones se
interesasen por los servicios de éste cientifico en plena madurez creativa.
En 1952, acept6 una oferta de la Universidad de Virginia en Charlottesville,
en los Estados Unidos. Los ultimos meses de su estancia europea, los pasé
en su laboratorio de Paris trabajando sobre las propiedades opticas de capas
multiples alternadas. Habian nacido ya, sus hijos Blas y Cristina. No debe
ser facil dejar Paris, pero Cabrera era un hombre decidido. Sabia que en
Estados Unidos sus posibilidades como cientifico eran muy superiores. Era
consciente de su valia personal, y sabedor de que en aquel pais, y en
aquellos momentos, esa era su principal carta de presentacion. Recuerdo
que a ¢l le sublevaba la aspiracion, en el caso de la gente joven, de
apalancarse cuanto antes en un puesto permanente. Consideraba que ello
esterilizaba el empuje de la fuerza creativa cortando las alas de la creacion.
Sin duda, ¢l era un buen ejemplo de lo acertado de su propio punto de vista.
En Virginia, donde tuvo a su hija Carmen, permaneceria hasta 1968. Alli
encontré6 un ambiente que, estoy convencido, siempre habia afiorado. el
ambiente universitario. D. Nicolas no era partidario de que los laboratorios
y departamentos de investigacion, estuviesen alejados de las aulas. Cuando
hablaba, tras su vuelta a Espafia, del Instituto Nacional de Fisica y Quimica
del que su padre fue director, opinaba que "habia sido un error no construir
el Instituto en la Ciudad Universitaria de modo que la docencia y la
investigacion se mantenga como unidad, al estilo americano". Lamento no
poder exponer aqui, por falta de tiempo, la actitud de D. Nicolas ante la
docencia universitaria, y la enorme importancia que concedia a esa
actividad, como acicate de la creacion cientifica, ya que son sus logros mas
importantes en investigacion durante la etapa americana lo que ahora me
ocupa. Su contrato inicial fue de Associate Professor, pasando a Full
Professor en 1954. En 1962 fue nombrado Director del Departamento de
Fisica, puesto en el que pudo desarrollar su especial talento como
organizador. Dirigi6 tesis doctorales a jovenes que luego llegaron a ser
cientificos de primera fila, y que mantuvieron hacia él, como yo he podido
comprobar, una actitud de admiracién y respeto cientifico y humano,
durante toda su existencia. Puestos a elegir, hay dos trabajos de ésta época
que resumen lo mas relevante de sus investigaciones. El primero, "Motion
of a Frenkel-.ontorova dislocation in a one dimensional crystal”, engarza
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con su investigacion en Bristol, y lo hizo en colaboracién con Atkinson. El
segundo "Theory of surface scattering and detection of surface phonons"
(3), escrito en colaboracion con V.Celli y R. Manson, significa la piedra
angular de lo que iba a ser su mayor interés cientifico al final de su carrera.
La utilizacioén de la dispersion de atomos neutros por las superficies como
método para obtener informacién sobre las propiedades vibracionales de
ésta, prometia ser una herramienta de gran importancia. Como he
comentado anteriormente, el desarrollo de las técnicas de ultraalto vacio,
permitia obtener y caracterizar superficies cristalinas adecuadas, como para
pensar en confirmar experimentalmente las teorias elaboradas por Cabrera y
colaboradores. La fisica de la superficie, aparecia como algo en la que el
objeto de la investigacion, la superficie, adquiria con los nuevos métodos el
perfil de los atomos, de sus ordenamientos y reconstrucciones, a los cuales
se podia acceder con sondas adecuadas. Temas de importancia extrema
estaban ahi esperando. D. Nicolés se trajo con ilusion a Espafia, tras su
vuelta en 1969, ésta linea de investigacién como tema a desarrollar bajo su
supervision directa. En Virginia, Cabrera hizo una notable labor. Las
responsabilidades que adquiri6 para hacer un buen departamento
universitario de fisica, lo convencieron, posiblemente, de su capacidad para
la tarea de organizaciobn y gestion. Sus contactos con colegas
hispanoamericanos y espafioles habian sido permanentes, y en él crecia la
idea de ser ttil impulsando la actividad cientifica en paises como México o
Venezuela. No podia, como persona agradecida que era, olvidar la acogida
generosa que la Universidad Nacional Autéonoma de México, dio a su padre
en 1941. Al mismo tiempo, sus pensamientos estaban en Espafia. Su padre
habia ocupado un lugar destacado en un esfuerzo que se habia visto
truncado por una guerra. La prostracion cientifica de Espafia habia llegado a
extremos impensables para aquellas generaciones, durante las décadas de
los cuarenta y cincuenta. Los afios sesenta, durante los que tantas cosas se
movieron en Europa, también iban a traer aires nuevos a la universidad
espafiola. Gente joven y entusiasta, eligieron para su formacion centros
prestigiosos allende nuestras fronteras, en Europa y en Estados Unidos. En
el Centro Europeo de Investigaciones Nucleares, se creaba un buen
ambiente para fisicos brillantes. D. Nicolds debia sofiar en esos tiempos
que, quiza él, podia, en el terreno de la fisica, contribuir a rehacer, y de
forma irreversible, lo que su padre habia comenzado. Como dije antes,
valoraba de una forma singular, el esfuerzo de su padre " como un ejemplo-
escribia- de lo que puede hacerse en un ambiente de tan escasa tradicion
cientifica como era el nuestro". Elegiria, como veremos, dedicar su ultima
etapa profesional a un esfuerzo parecido al de su progenitor.
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Si importante fue su labor organizativa en Virginia, mas ain fue,
posiblemente, la que hizo en Madrid. Pero, no quememos etapas y
concluyamos primero lo referente a su carrera como investigador. D.
Nicolas llega a la Universidad Autéonoma de Madrid, UAM, en 1969,
manteniendo su puesto de catedratico en Virginia hasta mayo de 1974. Por
lo tanto, durante este primer periodo, el mas importante por la cantidad de
sucedidos con interés, su relacion con la universidad americana fue muy
intensa. Ello se refleja en su curriculum, en el que aparecen articulos de
estos afios firmados con sus colaboradores de alli. Aunque enviado a
publicar en mayo de 1969, aparecié en 1970 un articulo extenso y de gran
importancia bajo el titulo de "Scattering of atoms by solid surfaces"(4), con
la autoria de N.Cabrera, V. Celli, F.O. Goodman y R. Manson. Se expone
en ¢l una teoria mecanocuantica de la dispersion elastica de atomos por
superficies solidas, y se discute con brevedad la extension de la teoria a
procesos de dispersion inelastica, es decir, con intercambio de excitaciones
de la superficie, los fonones de la superficie.

En aquellos comienzos madrilefios Cabrera tuvo un colaborador muy
activo, Javier Solana, que procedia de Virginia, donde habia hecho el
doctorado, en teoria de la materia condensada, en problemas relacionados
con unas excitaciones muy interesantes del helio superfluido. Javier
colabor6 con D. Nicolés, y lo ayudé a entender diversos aspectos de los
entresijos de la sociedad espafiola de la época. No es posible olvidar, en éste
ultimo aspecto, a Antonio Trueba, que puso, con sacrificada ilusion, todo su
esfuerzo, y su tiempo, en labores, no por menos vistosas, menos
importantes. Sin embargo, su principal colaborador cientifico hasta su
jubilacion, fue Nicolas Garcia, entonces joven impulsivo, que profeso
siempre un respetuoso y admirativo carifio hacia la persona de Cabrera.
Ambos publicaron en 1978 un articulo de gran interés, en el que se
presentaba un método para resolver la dispersion de ondas por una
superficie periddica dura. En los ultimos afios de su vida académica, D.
Nicolas tuvo la satisfaccion de ver publicado un articulo, en el que se
mostraba la primera observacion experimental directa de la transicion de
fase rugosa, en cristales de helio en equilibrio con el helio liquido
superfluido. jCasi cuarenta afios después de que Cabrera hubiese hecho la
prediccion tedrica de éste tipo de transicion! Voy a concluir este apartado
sobre la carrera investigadora de D. Nicolas Cabrera, con unas frases que
escribid el Prof. M.J.Yacaman de la Universidad Autdbnoma de México, en
un articulo sobre la influencia de Cabrera en la ciencia iberoamericana,
publicado en un libro homenaje a nuestro personaje. Escribia: "Yo siempre
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recuerdo a D. Nicolas como un gran hombre en todos los respectos, con una
tremenda intuicidon para la ciencia, un gran espiritu humano, y una
personalidad afable con un gran sentido del humor. Espero que los trabajos
presentados en este volumen representen un pequefio tributo a la figura de
uno de los cientificos iberoamericanos mas grandes de todos los tiempos".

Voy a pasar a continuaciéon a exponer algunos de los aspectos mas
destacables, en mi opinion, de la actividad de D. Nicolds como organizador
de la docencia universitaria y de la investigacion. Y hablo conjuntamente de
docencia e investigacion, porque para ¢l ambas cosas debian estar
intimamente relacionadas. Yo lo he oido decir, que todo buen profesor tiene
que ser buen investigador, aunque no todo buen investigador haya de ser
buen profesor. Cuando Cabrera llegd a Virginia en 1952, llegd como
miembro de un pequefio departamento de fisica, con solo cinco profesores,
con el cometido de comenzar investigaciones en el campo de la fisica del
estado solido. Es posible hacerse una idea clara del ambiente universitario
que se encontr6 Cabrera. Ese ambiente tuvo la suerte de ser inmortalizado
por uno de los escritores mas geniales de nuestro siglo: Vladimir Nabokov.
De la mano de un modesto profesor emigrado, Timofey Pnin, podemos
sumergirnos en la vida diaria de una universidad americana de tipo medio,
de principios de los afios cincuenta. Pronto obtuvo, D. Nicolas,
reconocimientos por su labor investigadora y de formacion, siendo
doctorandos suyos de aquellos tiempos R.V. Coleman y P.B. Price, que han
hecho en su carrera excelentes contribuciones a la fisica de la materia
condensada. Se le nombr6 miembro de varios comités asesores de
organismos con decision en la politica cientifica, y de centros nacionales de
investigacion. En 1962 fue nombrado jefe del departamento de fisica. Bajo
su direccion el departamento de Virginia, llegd a ser un centro de primera
categoria en investigacion. EI nimero de sus profesores crecid hasta treinta,
creciendo también de forma espectacular el numero de licenciados,
alrededor de cien, que se iniciaban en la investigacion. Potencid el
crecimiento de otras ramas de la fisica como la fisica nuclear y la fisica de
bajas temperaturas. Su labor organizativa y su magisterio no se limitaron a
Virginia. Su carifio hacia México y Venezuela, lo llevo a esforzarse en
ayudar a investigadores y estudiantes de éstos paises, para promover en
ellos un mayor desarrollo cientifico. A México viajaba con frecuencia. Alli
vivian su madre y su hermano Blas. D. Nicolas, segiin cuenta su hijo, viajo
por vez primera a México en coche con toda la familia, en 1953. En aquél
entonces, no existia el entramado de autopistas que existe actualmente, por
lo que emplearon catorce dias en el viaje, durante cada uno de los cuales D.
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Nicolas estaba ocho horas al volante. Es posible, gracias a Nabokov
también, recrear la dureza de los largos viajes a través de las carreteras y
moteles estadounidenses, siguiendo la apasionada huida, u afio antes, de
Humbert Humbert con si ninfula. Desde ese primer viaje a México, las
visitas de D. Nicolas se repitieron con frecuencia, dado que alli vivia una
parte muy importante de su familia y alli se encontraban, también, colegas
que habian ayudado y recibido, a su vez, el magisterio de su padre, durante
los cuatro afios que éste trabajo, hasta su fallecimiento en 1945, en el
Instituto de Fisica y en la Facultad de Ciencias de la UNAM. La influencia
que nuestro Cabrera tuvo en la fisica mejicana se pondera, de una manera
muy carifiosa, en el articulo del Prof. Yacaman que cité anteriormente. Sus
primeros contactos fueron con los profesores Manuel Sandoval Vallarta y
Marcos Moshinsky, que habian sido estudiantes de Blas en los primeros
cursos de fisica moderna que se dieron en la UNAM. A partir de entonces,
ademas de las repetidas visitas de D. Nicolas, existié también, por su parte,
un interés grande en apoyar las estancias de estudiantes mexicanos en la
universidad de Virginia. En el transcurso del tiempo llegamos a 1967, afio
en el que Cabrera dio un curso de termodindmica de los sélidos en el
Instituto Nacional Politécnico de México, dentro de la Escuela
Latinoamericana de Fisica. Sus estudiantes, entre los que se encontraba
Yacaman, se sintieron motivados y también sorprendidos. En palabras de
éste: "Durante el curso dio unas clases excelentes que fueron grabadas por
algunos estudiantes y distribuidas posteriormente entre los cientificos del
estado solido. Estas notas fueron para la mayoria de los asistentes al curso,
el primer contacto con la fisica de las superficies." También es interesante
destacar los comentarios sobre la actitud de D. Nicolds hacia los
estudiantes: "Comenz6 su curso, -comenta Yacamdn,- de una forma muy
general alcanzando luego una gran profundidad. Con un respeto
extraordinario a la inteligencia de la audiencia". También: "Los estudiantes
apreciaron mucho el respeto y la preocupacion que D. Nicolds manifestaba
hacia ellos, algo que no habian apreciado en otros profesores extranjeros"
En estos comentarios se pone de manifiesto una caracteristica de Cabrera,
que yo tuve la posibilidad de valorar también, su sincero respeto por la
inteligencia de los demas. En el afio 1969 D. Nicolas recibi6, del Instituto
Politécnico Nacional de Meéxico, la invitacion como experto de la
UNESCO, para pasar alli un sabatico. Una vez incorporado dividié su
tiempo ente el Politécnico y el Instituto de Fisica de la UNAM. Su
liderazgo inteligente y entusiasta, contribuyd a dar un notable impulso, en
dichas instituciones, a la fisica del estado so6lido y de las superficies,
impulso que se extendid a otras universidades y centros de investigacion de
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Meéxico y, también, de Venezuela, pais en el que Cabrera habia estado de
sabatico en 1963 invitado por el Prof. Gonzalo Castro Farifias, de la
Universidad de Caracas. Como se puede concluir de lo expuesto, su
presencia en Latinoamérica tuvo un efecto muy positivo que se resume en
una frase de su, ya varias veces citados, discipulo M.José Yacaman: " El
Prof. Cabrera jugd un papel clave en el desarrollo de la ciencia de las
superficies en Latinoamérica. Su influencia fue muy profunda y hubieron de
pasar muchos afios antes que su efecto fuese totalmente absorbido por la
comunidad."

El recuerdo de Espafia, como para la gran mayoria de los emigrados,
no habia desaparecido en D. Nicolas, y menos atn, si cabe, en Carmen, su
mujer. Los contactos con otros cientificos espafioles, como Velayos y Bru,
residentes en Espafa, y otros, como Ochoa, residentes en Estados Unidos,
eran frecuentes. Sus éxitos personales como cientifico y como organizador,
eran conocidos y valorados en circulos diversos, entre los que se
encontraban algunos que adquirieron, dentro del régimen de Franco, un
peso notable en la década de los sesenta. El ministro Villar Palasi, fue, en
mi opinién, un hombre sinceramente preocupado por la Universidad y
consciente de la necesidad de que en ésta se impulsase la actividad
investigadora. Supongo que debid llegar a la conclusion, que era muy
complicado hacer un cambio profundo contando con las estructuras
universitarias y de investigacion existentes, y que seria mas rapido y eficaz
crear universidades nuevas en donde, al menos en algunas areas, se
pudiesen incorporar profesionales de prestigio, sorteando los efectos
nocivos de los clanes, casi familiares, tradicionales en la universidad
espafiola. No sé si estas fueron las razones. A lo mejor fue necesario, para
crear las universidades autobnomas, convencer a los mas recalcitrantes del
régimen que seria bueno tener centros donde educar a los hijos de sus élites,
lejos de los grandes centros masificados y politicamente conflictivos. Lo
cierto es, que directamente y a través de asesores y amigos comunes, Villar
Palasi tomo contacto con diversos cientificos de relieve internacional, entre
los que se encontraba Cabrera. Se le ofreci6 crear un departamento de fisica
en la Universidad Auténoma de Madrid. Recientemente, José Manuel
Sanchez Ron ha publicado un excelente libro, que bajo el titulo "Cincel,
martillo y piedra", nos habla de las vicisitudes de la ciencia en Espaiia,
durante los siglos diecinueve y veinte. En las Gltimas paginas del libro,
como corresponde a su proximidad histérica, hay un apartado que bajo el
titulo "Regresos y "Autonomias": El caso de Nicolas Cabrera" permite que
nos acerquemos a aquel entonces. Seria presuntuoso por mi parte, escribir la
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historia, cuando Sanchez-Ron, dedicado a la historia de la ciencia, ha
reconstruido aspectos importantes de aquellos momentos, de forma muy
acertada. Hay varios documentos que muestran tres aspectos que, por su
relevancia, paso a destacar: el interés claro del ministro, por la creacion de
un nuevo tipo de universidad en el sentido apuntado previamente. La
imposibilidad de obtener, por parte de los posibles candidatos a Ia
incorporacién, unas garantias de futuro razonables como para dejar
situaciones estables y profesionalmente sélidas, en otros paises; finalmente,
la audacia de D. Nicolas Cabrera, convencido de que tenia un compromiso
con el desarrollo de la fisica en Espafia.

El primero de los aspectos mencionados, se recoge en una carta del
propio Villar Palasi. El que fuera Catedratico de Quimica Inorganica, y
durante un tiempo Rector, de la Universidad Complutense, amén de
Presidente del CSIC, Enrique Gutiérrez Rios, habia hecho diversas
aproximaciones a Cabrera en la década de los sesenta. Consideraba
Gutiérrez Rios, y asi se lo hacia saber a Cabrera en una carta fechada el tres
de Junio de 1968, que la creacion de una segunda universidad en Madrid, en
la que los catedraticos podrian ser nombrados por designacion directa, era
una buena oportunidad, y que el ministro le habia pedido que le hiciera, en
su nombre, una serie de ofrecimientos para que se incorporase, cuanto
antes, a la nueva universidad. A D. Nicolas le parecié muy interesante la
proposicion, por lo que contestd ilusionadamente, entre muchas otras cosas,
lo siguiente: "Creo sinceramente que tanto fuera como dentro de Espafia se
podria reunir un nimero de cientificos y humanistas sobresalientes que
serian capaces de organizar una Universidad de primera linea en el plano
internacional". Tras conocer la carta de Cabrera, el ministro le comentaba
por escrito a Gutiérrez Rios, que le habia impresionado muy positivamente
el parrafo citado de la carta de D. Nicolas. Para Villar Palasi, la recogida de
cientificos y humanistas sobresalientes, era el espiritu con que queria
empezase la nueva universidad, "para que se crease -escribia el ministro- un
cierto espiritu entre los catedraticos mas acorde con la dedicacion tal como
lo entienden fuera y bastante diferente a como lo entendemos aqui”. Los
que hemos vivido aquellos tiempos sabemos lo dificil que era dar garantias
solidas para proyectos de futuro en un régimen, cuyo final empezaba a
vislumbrarse. Importantes figuras de la ciencia, como Ochoa y Grande
Covian, amigos personales de D. Nicolas, fueron contactados por las
autoridades del Ministerio de Educacion para que de una u otra forma se
embarcasen en la aventura. Tal como consta en la documentacién que
Sanchez-Ron aporta, ambos cientificos mantuvieron una interesante
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correspondencia con Cabrera, en la que se vierten opiniones que ayudan a
clarificar lo acaecido posteriormente. En noviembre de 1968, Ochoa le
escribia a Cabrera. "Creo que puedo resumir mi impresion diciendo que
definitivamente algo se esta poniendo en movimiento y que, si no se pierde
de vista el objetivo final y no hay equivocaciones, algo saldra de ello.
Mientras se tenga esperanza, continiio pensando que se deberia ayudarles".
Ya en junio de 1969, cuando D. Nicoléds casi habia decidido su venida,
Grande Covian escribia sobre las dificultades que ¢l veia: " Las dos mas
graves a mi juicio -decia Grande- son, la inercia de la organizacion
universitaria y la reaccidon por parte de muchos de nuestros colegas, que,
aunque digan otra cosa, estan perfectamente satisfechos con la situacion”
Tanto Ochoa como Covian, consideraban de gran interés la venida de
Cabrera como avanzadilla que permitiese a otros verificar la situacion real.

Ochoa, con amistad y buen criterio, le aconsejaba aceptar la oferta
espafiola en principio por un tiempo limitado. "Mantener -le decia- tu
posicion aqui, con un permiso temporal, me parece esencial. Hoy por hoy,
no aconsejaria a nadie que dejase de mantener un pie firmemente anclado
aqui. En esas condiciones creo que podras hacer el experimento y hasta me
gustaria que lo hicieses por lo que ello supondria para Espafia si .pitase. ".
Grande Covian, también le animaba a dar el paso. "Temo mucho -escribia
Grande a Cabrera- que una vez alli tuviese que perder la mayor parte del
tiempo en luchar contra la oposicion que vamos a encontrar. Creo que quiza
tu, por ser los fisicos gente mas civilizada, podrias tener menos dificultades
en este sentido.". Pienso que los puntos de vista recogidos aqui, y en otros
documentos existentes, muestran a las claras cual era la situacion desde el
punto de vista de unos cientificos prestigiosos que conocian bien el estado,
en aquel tiempo, de las universidades y centros de investigacion espaiioles.
Como lleg6 a escribir Ochoa, "los primeros pasos deben ir encaminados a
crear el personal cientifico y académico que practicamente no existe".
Considero, que el conocimiento de ésta época, agiganta la figura y la obra
de D. Nicolas. Tuvo, como habia hecho otras veces a lo largo de su vida, la
audacia para lanzarse en pos de una reconstruccion en la que habia sofiado
durante largos afios, y el teson para afrontar fracasos y vencer dificultades.
Su labor en Espafia, esta ahi, para quien quiera verla. Yo he participado de
forma directa, ya que me incorporé al Departamento de Fisica de la UAM
en sus comienzos, en la apasionante aventura que Cabrera emprendio. Su
capacidad de organizacion y liderazgo cientifico, hubieron de manifestarse
a tope para contratar el personal necesario, de entre los cientificos jovenes
que trabajaban en Espafia y en el extranjero. Tenia una notable facilidad
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para convencer y entusiasmar. Defendia la contratacion temporal
argumentando que un cientifico joven no debia nunca amarrarse a una
situacion fija. En los primeros tiempos, y mientras existid el soporte de
Villar Palasi y del primer rector de la UAM, Sanchez Agesta, Cabrera
dispuso de capacidad de maniobra como para crear un Departamento joven
e ilusionado, en el que se vivia con pasion la aventura. Como es natural, a
pesar de la inteligencia y capacidad cientifica de las personas que se
incorporaron, quizds por ello, no faltaron los conflictos, ni las pequefias
mezquindades, pero eso no llegaba, al principio, a enturbiar el clima de
efervescencia cientifica y creatividad que alli se respiraba. D. Nicolas
estaba siempre presente. Visitaba los laboratorios en cualquier momento del
dia, sabados, y a veces domingos, incluidos. Los seminarios, uno o dos,
todas las semanas, eran practicamente de asistencia obligada. D. Nicolas se
sentaba en primera fila, y era facilmente detectable el respeto, a veces
reverencial, que originaba en el conferenciante. Cualquier pregunta, por
inocente que fuera, originaba tension en el preguntado, que, sin duda, se
devanaba los sesos tratando de adivinar qué reflexion profunda se escondia
por ejemplo, en "qué es lo que habia representado en el eje de las equis". Le
agradaba comer con la gente joven del Departamento en los "chiringuitos"
que se montaron al socaire de las obras en el campus de Cantoblanco, y
posteriormente en los restoranes de las cercanias y comedores
universitarios. Para muchos de nosotros, departir con una figura como D.
Nicolas esos ratos de solaz, era una vivencia muy positiva. Se organizaron
campeonatos de ping-pong, en los que ¢él participaba con un gran
entusiasmo. Esta sencillez en su comportamiento, no era muy frecuente en
los estereotipos de catedratico de la época. Pero creo que, para la mayoria
de nosotros, su postura afectuosa y sencilla, incrementaba nuestro respeto y
admiracion hacia su persona. Pienso que eso es algo que solo lo pueden
mantener los grandes hombres y mujeres, que se nos aparecen como son, en
su grandeza, sin necesidad de los parapetos de distanciamiento y Ia
estudiada superioridad, que frecuentemente se encuentran en la gente que
no alcanza la verdadera grandeza humana. Alguien escribira algun dia, sin
el apasionamiento del que ha participado, la historia de aquel Departamento
de Fisica, pero nada se podra comprender sin aquella figura que componia
D. Nicolas con su sombrero, sus singulares gafas de sol, y la cartera con la
memoria anual del Departamento, como Unica arma, dispuesto a enfrentarse
con colegas, autoridades y burdcratas, en su lucha por hacer crecer,
primero, y tratar de evitar su destruccion, después, el edificio que habia
construido con esfuerzo. Es imposible para mi, resumir la historia del
Departamento, mas tarde Division, de Fisica de la UAM. Tal como
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presumia Grande Covian, algunos sectores de la comunidad académica
establecida, miraban con mas recelo que complacencia, la empresa recién
comenzada. Cabrera tuvo que ver pronto que algunos de los puntales de su
proyecto, como Luis Bel y Oriol Bohigas se volvian a sus centros de
procedencia en el extranjero. Las dificultades y trabas administrativas se
potenciaban con los dias de ebullicion politica que anunciaban el final de un
régimen. Cabrera no tir6 nunca la toalla, y fue extraordinaria su defensa de
los miembros del departamento represaliados por motivos presuntamente
politicos. Estaba convencido de que podia surtir efecto, incluso ante
aquellas autoridades, la apelacion a la calidad cientifica de los
expedientados. Recuerdo, con cierta amargura, las reuniones en el despacho
del rector Julio Rodriguez, a las que D. Nicolas acudia con algunos
miembros del departamento, para protestar por los diversos motivos que
hacian casi imposible la actividad académica en el campus. Y la actitud
altiva, por no emplear otros términos, de aquel, sabedor de su proximo
nombramiento como ministro. En aquellos tiempos, y a pesar de todos los
desgraciados avatares que hubo de pasar, D. Nicolas estaba persuadido de
que lo que habia hecho no tenia marcha atras, y que habia acertado en su
decision de venir a Espafia, en el momento y circunstancias que lo hizo. Es
cierto, y asi lo recoge su hijo Blas en una breve biografia de su padre, que
en 1973 estuvo a punto de volverse a Estados Unidos. Las dificultades eran
enormes, afectando incluso a su posicion como catedratico contratado. Sin
embargo, la tenacidad y espiritu de lucha que habia heredado de su padre, le
hicieron afrontar la situacion, pensando, sobre todo, en la gente joven, para
la que habia creado un ambiente de investigacion inédito, hasta entonces, en
Espafia. Uno puede pensar que aquella aventura tuvo un final. El ataque
frontal por parte del sistema de alguno de sus aspectos fundamentales,
como la capacidad de contratacion por el jefe de departamento, era
imposible de superar, ya que obligaba a la bisqueda de una cierta
estabilidad a través de la via general del funcionariado docente. Ello origind
tensiones adicionales, dada la personalidad fuerte de muchos de los
implicados en la "numerizacion". Al mismo tiempo se producian los
grandes vaivenes y cambios politicos que nos depararon los setenta. Pero,
pasando a través de esos tiempos convulsos, la semilla plantada en la
ciencia espafiola no dejaba de crecer, y se fueron destacando grupos activos
en las distintas universidades y centros de investigacion. Como habia
deseado Ochoa en la carta, antes mencionada, dirigida a Cabrera, el
experimento habia ‘pitado’, con todo lo que ello significaba para Espaia.
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Permitanme terminar con algunas apreciaciones mas personales.
Estuve proximo a D. Nicolas hasta el final de sus dias en 1989. Fui testigo
directo de su decadencia, de la cual era plenamente consciente, habida
cuenta de la enfermedad hereditaria que sufria. "Dichosa entropia" decia,
cuando se evidenciaban los huecos de su memoria. A lo largo de todos esos
afos, mi sensacion ante su presencia fue la de estar ante un gran hombre. Es
una sensacion que no he sentido, de forma tan clara, ante ninguna otra de
las personas que he tratado. Cabrera recibié reconocimientos y homenajes
de diversa indole a lo largo de sus ultimos afos. Entre estos cabe destacar,
por su cardcter cientifico, el numero especial que la revista Philosophical
Magazine A le dedic6 cuando cumplid setenta afios, numero al que
contribuyeron con articulos originales algunos fisicos eminentes. También
en 1982, se celebrd en la Universidad Menéndez Pelayo en Santander, un
curso en su honor. La Universidad Autonoma le nombrd Profesor Emérito,
y recientemente le ha dedicado una calle. Desde hace siete afios, se celebra
en el mes de septiembre una escuela internacional sobre temas relacionados
con la materia condensada, que lleva el nombre de Escuela Internacional
"Nicolas Cabrera". Este evento, que organiza el Instituto de Ciencia de
Materiales "Nicolds Cabrera", ha alcanzado un notable prestigio
internacional. Creo que estas actividades contribuyen, como pequefias
muestras de gratitud a su obra, a que su memoria se mantenga viva en una
comunidad que le debe tanto. En sus ultimos afios, no recibié, en mi
opinioén, los honores que merecia. Era un hombre sencillo y modesto al que
le costaba incomodar a los demas. Quiza por eso fue facil, para muchos, no
sentir su olvido.

No buscaba el halago ni halagaba, y en su tumba esté escrito: “Nicolas
Cabrera Sanchez, FISICO, Cientifico de Gran Humanidad.”

Sebastian Vieira
Catedratico de Fisica de la Materia Condensada

Referencias de algunos articulos cientificos, especialmente
importantes, del Prof. Cabrera, que han sido comentados en el curso de la
conferencia:

[1] Cabrera N and Mott N F, 1999, Rep. Prog. Phys. 12, 63.
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[2] Burton W C, Cabrera N and Frank F C, 1951, Trans. Roy. Soc.
(London) A243, 299.

[3] Cabrera N, Celli V and Manson R, 1969, Phys. Rev. Letters 22,
346.

[4] Cabrera N, Celli V, Goodman F O and Manson R, 1970, Surf. Sci.
19, 67.
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